192
Views
2
CrossRef citations to date
0
Altmetric
Articles

Thermal Transport in Sheared Nanoparticle Suspensions: Effect of Temperature

, &

References

  • J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett., vol. 78, no. 6, pp. 718–720, 2001. DOI: 10.1063/1.1341218.
  • J. A. Eastman, S. R. Phillpot, S. U. S. Choi, and P. Keblinski, “Thermal transport in nanofluids,” Annu. Rev. Mater. Res., vol. 34, no. 1, pp. 219–246, 2004. DOI: 10.1146/annurev.matsci.34.052803.090621.
  • W. Q. Lu and Q. M. Fan, “Study for the particle's scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method,” Eng. Anal. Boundary Elem., vol. 32, no. 4, pp. 282–289, 2008. DOI: 10.1016/j.enganabound.2007.10.006.
  • J. Garg. et al., “Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid,” J. Appl. Phys., vol. 103, no. 7, pp. 1–6 (074301), 2008. DOI: 10.1063/1.2902483.
  • S. K. Das, S. U. S. Choi, and H. E. Patel, “Heat transfer in nanofluids—A review,” Heat Transfer Eng., vol. 27, no. 10, pp. 3–19, 2006. DOI: 10.1080/01457630600904593.
  • W. Yu, D. M. France, J. L. Routbort, and S. U. S. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transfer Eng., vol. 29, no. 5, pp. 432–460, 2008. DOI: 10.1080/01457630701850851.
  • M. Ahmed and M. Eslamian, “Laminar forced convection of a nanofluid in a microchannel: Effect of flow inertia and external forces on heat transfer and fluid flow characteristics,” Appl. Therm. Eng., vol. 78, no. 18, pp. 326–338, 2015. DOI: 10.1016/j.applthermaleng.2014.12.069.
  • M. Bouhalleb and H. Abbassi, “Numerical investigation of heat transfer by CuO-water nanofluid in rectangular enclosures,” Heat Transfer Eng., vol. 37, no. 1, pp. 13–23, 2016. DOI: 10.1080/01457632.2015.1025003.
  • R. Mokhtari Moghari, F. Talebi, R. Rafee, and M. Shariat, “Numerical study of pressure drop and thermal characteristics of Al2O3-water nanofluid flow in horizontal annuli,” Heat Transfer Eng., vol. 36, no. 2, pp. 166–177, 2015. DOI: 10.1080/01457632.2014.909193.
  • C. Sun and B. Bai, “Gas diffusion on graphene surfaces,” PCCP, vol. 19, no. 5, pp. 3894–3902, 2017. DOI: 10.1039/C6CP06267A.
  • C. Sun and B. Bai, “Diffusion of gas molecules on multilayer graphene surfaces: Dependence on the number of graphene layers,” Appl. Therm. Eng., vol. 116, pp. 724–730, 2017. DOI: 10.1016/j.applthermaleng.2017.02.002.
  • P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” Int. J. Heat Mass Transfer, vol. 45, no. 4, pp. 855–863, 2002. DOI: 10.1016/S0017-9310(01)00175-2.
  • N. Sankar, N. Mathew, and C. B. Sobhan, “Molecular dynamics modeling of thermal conductivity enhancement in metal nanoparticle suspensions,” Int. Commun. Heat Mass Transfer, vol. 35, no. 7, pp. 867–872, 2008. DOI: 10.1016/j.icheatmasstransfer.2008.03.006.
  • C. Sun, W. Q. Lu, B. Bai, and J. Liu, “Anomalous enhancement in thermal conductivity of nanofluid induced by solid walls in a nanochannel,” Appl. Therm. Eng., vol. 31, no. 17–18, pp. 3799–3805, 2011. DOI: 10.1016/j.applthermaleng.2011.07.021.
  • C. Z. Sun, W. Q. Lu, B. F. Bai, and J. Liu, “Novel flow behaviors induced by a solid particle in nanochannels: Poiseuille and Couette,” Chin. Sci. Bull., vol. 59, no. 20, pp. 2478–2485, 2014. DOI: 10.1007/s11434-014-0282-x.
  • W. Q. Lu and K. Xu, “Theoretical study on the interaction between constant-pressure specific heat and nonequilibrium phase change process in two-phase flow,” Int. J. Thermophys., vol. 31, no. 10, pp. 1952–1963, 2010. DOI: 10.1007/s10765-008-0515-9.
  • W. Q. Lu and F. W. Bai, “The specific heat at constant pressure in the latent functional fluid with microencapsulated phase-change materials,” J. Enhanced Heat Transfer, vol. 9, no. 1, pp. 39–46, 2002. DOI: 10.1615/JEnhHeatTransf.v9.i1.40.
  • D. L. Lee and T. F. Irvine, “Shear rate dependent thermal conductivity measurements of non-Newtonian fluids,” Exp. Therm. Fluid Sci., vol. 15, no. 1, pp. 16–24, 1997. DOI: 10.1016/S0894-1777(96)00099-4.
  • S. X. Q. Lin, X. D. Chen, Z. D. Chen, and P. Bandopadhayay, “Shear rate dependent thermal conductivity measurement of two fruit juice concentrates,” J. Food Eng., vol. 57, no. 3, pp. 217–224, 2003. DOI: 10.1016/S0260-8774(02)00300-X.
  • C. W. Sohn, and M. M. Chen, “Microconvective thermal conductivity in disperse two-phase mixture as observed in a laminar flow,” J. Heat Transfer, vol. 103, no. 1, pp. 47–51, 1981. DOI: 10.1115/1.3244428.
  • L. G. Leal, “On the effective conductivity of dilute suspension of spherical drops in the limit of low particle Peclet number,” Chem. Enginering Commun., vol. 1, no. 1, pp. 21–31, 1973. DOI: 10.1080/00986447308960412.
  • A. Nir and A. Acrivos, “The effective thermal conductivity of sheared suspensions,” J. Fluid Mech., vol. 78, no. 1, pp. 33–48, 1976. DOI: 10.1017/S0022112076002310.
  • S. Shin and S. H. Lee, “Thermal conductivity of suspensions in shear flow fields,” Int. J. Heat Mass Transfer, vol. 43, no. 23, pp. 4275–4284, 2000. DOI: 10.1016/S0017-9310(00)00050-8.
  • J. Buongiorno. et al., “A benchmark study on the thermal conductivity of nanofluids,” J. Appl. Phys., vol. 106, no. 9, pp. 1–14 (094312), 2009. DOI: 10.1063/1.3245330.
  • M. Vladkov and J. L. Barrat, “Modeling transient absorption and thermal conductivity in a simple nanofluid,” Nano Lett., vol. 6, no. 6, pp. 1224–1228, 2006. DOI: 10.1021/nl060670o.
  • T. X. Phuoc and M. Massoudi, “Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3-deionized water nanofluids,” Int. J. Therm. Sci., vol. 48, no. 7, pp. 1294–1301, 2009. DOI: 10.1016/j.ijthermalsci.2008.11.015.
  • R. Mondragon, J. E. Julia, A. Barba, and J. C. Jarque, “Determination of the packing fraction of silica nanoparticles from the rheological and viscoelastic measurements of nanofluids,” Chem. Eng. Sci., vol. 80, no. 10, pp. 119–127, 2012. DOI: 10.1016/j.ces.2012.06.009.
  • S. Bobbo. et al., “Viscosity of water based SWCNH and TiO2 nanofluids,” Exp. Therm. Fluid Sci., vol. 36, no. 1, pp. 65–71, 2012. DOI: 10.1016/j.expthermflusci.2011.08.004.
  • J. Chevalier, O. Tillement, and F. Ayela, “Structure and rheology of SiO2 nanoparticle suspensions under very high shear rates,” Phys. Rev. E, vol. 80, no. 5, pp. 1–7 (051403), 2009. DOI: 10.1103/PhysRevE.80.051403.
  • K. Anoop, R. Sadr, M. Al-Jubouri, and M. Amani, “Rheology of mineral oil-SiO2 nanofluids at high pressure and high temperatures,” Int. J. Therm. Sci., vol. 77, no. 3, pp. 108–115, 2014. DOI: 10.1016/j.ijthermalsci.2013.10.016.
  • S. Halelfadl, P. Estelle, B. Aladag, N. Doner, and T. Mare, “Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature,” Int. J. Therm. Sci., vol. 71, no. 3, pp. 111–117, 2013. DOI: 10.1016/j.ijthermalsci.2013.04.013.
  • K. H. Krishna, S. Neti, A. Oztekin, and S. Mohapatra, “Modeling of particle agglomeration in nanofluids,” J. Appl. Phys., vol. 117, no. 9, pp. 1–8 (094304), 2015. DOI: 10.1063/1.4913874.
  • C. Sun, W.-Q. Lu, J. Liu, and B. Bai, “Molecular dynamics simulation of nanofluid's effective thermal conductivity in high-shear-rate Couette flow,” Int. J. Heat Mass Transfer, vol. 54, no. 11, pp. 2560–2567, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.02.005.
  • C. Sun, B. Bai, W.-Q. Lu, and J. Liu, “Shear-rate dependent effective thermal conductivity of H2O+SiO2 nanofluids,” Phys. Fluids, vol. 25, no. 5, pp. 1–15 (052002), 2013.
  • D. P. Kulkarni, D. K. Das, and G. A. Chukwu, “Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid),” J. Nanosci. Nanotechnol., vol. 6, no. 4, pp. 1150–1154, 2006. DOI: 10.1166/jnn.2006.187.
  • C. H. Li and G. P. Peterson, “Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids),” J. Appl. Phys., vol. 99, no. 8, pp. 1–8 (084314), 2006. DOI: 10.1063/1.2191571.
  • S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” J. Heat Transfer-Transactions Asme, vol. 125, no. 4, pp. 567–574, 2003. DOI: 10.1115/1.1571080.
  • C. S. Jwo, H. Chang, T. P. Teng, M. J. Kao, and Y. T. Guo, “A study on the effects of temperature and volume fraction on thermal conductivity of copper oxide nanofluid,” J. Nanosci. Nanotechnol., vol. 7, no. 6, pp. 2161–2166, 2007. DOI: 10.1166/jnn.2007.787.
  • H. Zhu, D. Han, Z. Meng, D. Wu, and C. Zhang, “Preparation and thermal conductivity of CuO nanofluid via a wet chemical method,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–6 (181), 2011. DOI: 10.1186/1556-276X-6-181.
  • H. Zhu, C. Zhang, S. Liu, Y. Tang, and Y. Yin, “Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids,” Appl. Phys. Lett., vol. 89, no. 2, pp. 1–3 (023123), 2006. DOI: 10.1063/1.2221905.
  • H. T. Zhu, Y. S. Lin, and Y. S. Yin, “A novel one-step chemical method for preparation of copper nanofluids,” J. Colloid Interface Sci., vol. 277, no. 1, pp. 100–103, 2004. DOI: 10.1016/j.jcis.2004.04.026.
  • H. T. Zhu, C. Y. Zhang, Y. M. Tang, and J. X. Wang, “Novel synthesis and thermal conductivity of CuO nanofluid,” J. Phys. Chem. C, vol. 111, no. 4, pp. 1646–1650, 2007. DOI: 10.1021/jp065926t.
  • O. A. Harzallah and D. Dupuis, “Rheological properties of suspensions of TiO2 particles in polymer solutions. 1. Shear viscosity,” Rheol. Acta, vol. 42, no. 1–2, pp. 10–19, 2003. DOI: 10.1007/s00397-002-0250-2.
  • W. Duangthongsuk and S. Wongwises, “Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids,” Exp. Therm. Fluid Sci., vol. 33, no. 4, pp. 706–714, 2009. DOI: 10.1016/j.expthermflusci.2009.01.005.
  • P. Estelle, S. Halelfadl, N. Doner, and T. Mare, “Shear history effect on the viscosity of carbon nanotubes water-based nanofluid,” Curr Nanoscience, vol. 9, no. 2, pp. 225–230, 2013. DOI: 10.2174/1573413711309020010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.