267
Views
2
CrossRef citations to date
0
Altmetric
Articles

Bubble dynamics of a pressure-driven cavitating flow in a micro-scale channel using a high density pseudo-potential Lattice Boltzmann method

&

References

  • R. W. Barber and D. R. Emerson, “Challenges in modeling gas-phase flow in microchannels: from slip to transition,” Heat Transf. Eng., vol. 27, no. 4, pp. 3–12, 2006.
  • J. Zhang, et al., “Fundamentals and applications of inertial microfluidics: a review,” Lab. Chip., vol. 16, no. 1, pp. 10–34, 2016.
  • N. Kockmann, “Transport phenomena and chemical reactions in modular microstructured devices,” Heat Transf. Eng., vol. 38, no. 14–15, pp. 1316–1330, 2017.
  • H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: microfluidics toward a lab-on-a-chip,” Annu. Rev. Fluid Mech., vol. 36, no. 1, pp. 381–411, 2004.
  • A. K. Au, W. Huynh, L. F. Horowitz, and A. Folch, “3D-printed microfluidics,” Angew. Chem. Int. Ed. Engl., vol. 55, no. 12, pp. 3862–3881, 2016.
  • J. Zhang, “Lattice Boltzmann method for microfluidics: models and applications,” Microfluid. Nanofluid., vol. 10, no. 1, pp. 1–28, 2011.
  • R. Payri, F. J. Salvador, F. Payri, and V. Bermu, “The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles,” Fuel, vol. 83, no. 4–5, pp. 419–431, 2004.
  • R. E. A. Arndt, “Cavitation in fluid machinery and hydraulic structures,” Annu. Rev. Fluid Mech., vol. 13, no. 1, pp. 273–326, 1981.
  • H. C. Chang and L. H. Chen, “Growth of a gas bubble in a viscous fluid,” Phys. Fluids, vol. 29, no. 11, pp. 3530–3536, 1986.
  • J. D. Anderson and J. Wendt, Computational Fluid Dynamics, vol. 206. New York, NY, USA: McGraw-Hill, 1995.
  • S. Patankar, Numerical Heat Transfer and Fluid Flow. Boca Raton, FL, USA: CRC, 1980.
  • E. Olsson and G. Kreiss, “A conservative level set method for two phase flow,” J. Comput. Phys., vol. 210, no. 1, pp. 225–246, 2005.
  • J. E. Pilliod and E. G. Puckett, “Second-order accurate volume-of-fluid algorithms for tracking material interfaces,” J. Comput. Phys., vol. 199, no. 2, pp. 465–502, 2004.
  • S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu. Rev. Fluid Mech., vol. 30, no. 1, pp. 329–364, Jan. 1998.
  • A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti, “Lattice Boltzmann model of immiscible fluids,” Phys. Rev., A, vol. 43, no. 8, pp. 4320–4327, 1991.
  • X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components,” Phys. Rev. E Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Topics, vol. 47, no. 3, pp. 1815–1819, 1993.
  • M. R. Swift, W. R. Osborn, and J. M. Yeomans, “Lattice Boltzmann simulation of nonideal fluids,” Phys. Rev. Lett., vol. 75, no. 5, pp. 830–833, 1995.
  • M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans, “Lattice Boltzmann simulations of liquid-gas and binary fluid systems,” Phys. Rev. E Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Topics, vol. 54, no. 5, pp. 5041–5052, 1996.
  • X. He and G. D. Doolen, “Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows,” J. Stat. Phys., vol. 107, no. 1/2, pp. 309–328, 2002.
  • P. Yuan and L. Schaefer, “Equations of state in a lattice Boltzmann model,” Phys. Fluids, vol. 18, no. 4, pp. 042101, 11 p., 2006.
  • X. He, S. Chen, and R. Zhang, “A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh – Taylor instability 1,” J. Comput. Phys., vol. 152, no. 2, pp. 642–663, 1999.
  • J. Zeng, L. Li, Q. Liao, W. Cui, Q. Chen, and L. Pan, “Simulation of phase transition process using lattice Boltzmann method,” Chinese Sci. Bull., vol. 54, no. 24, pp. 4596–4603, 2009.
  • S. Gong and P. Cheng, “Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows,” Comput. Fluids, vol. 53, no. 1, pp. 93–104, 2012.
  • J. W. Lindau, R. F. Kunz, D. A. Boger, D. R. Stinebring, and H. J. Gibeling, “High Reynolds number, unsteady, multiphase CFD modeling of cavitating flows,” J. Fluids Eng., vol. 124, no. 3, pp. 607–616, 2002.
  • S.-W. Chau, K.-L. Hsu, J.-S. Kouh, and Y.-J. Chen, “Investigation of cavitation inception characteristics of hydrofoil sections via a viscous approach,” J. Mar. Sci. Technol., vol. 8, no. 4, pp. 147–158, 2004.
  • T. Barberon and P. Helluy, “Finite volume simulation of cavitating flows,” Comput. Fluids, vol. 34, no. 7, pp. 832–858, 2005.
  • X. Chen, “Simulation of 2D cavitation bubble growth under shear flow by lattice Boltzmann model,” Commun. Comput. Phys., vol. 7, no. 1, pp. 212–223, 2009.
  • X. Chen, C. Zhong, and X. Yuan, “Lattice Boltzmann simulation of cavitating bubble growth with large density ratio,” Comput. Math. Appl., vol. 61, no. 12, pp. 3577–3584, 2011.
  • M. C. Sukop and D. Or, “Lattice Boltzmann method for homogeneous and heterogeneous cavitation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 71, no. 4 , pp. 046703, 7 p 2005.
  • G. Saritha and R. Banerjee, “Numerical study of cavitation and bubble growth using a high density ratio pseudo-potential lattice Boltzmann method,” ISME J. Thermofluids, vol. 3, no. 1, pp. 40–54, 2017.
  • A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, and J. J. Derksen, “Lattice Boltzmann study of mass transfer for two-dimensional bretherton/Taylor bubble train flow,” Chem. Eng. J., vol. 225, pp. 580–596, 2013.
  • P. Rapolu and S. Y. Son, “Characterization of wettability effects on pressure drop of two-phase flow in microchannel,” Exp. Fluids., vol. 51, no. 4, pp. 1101–1108, 2011.
  • E. Zwaan, S. Le Gac, K. Tsuji, and C. D. Ohl, “Controlled cavitation in microfluidic systems,” Phys. Rev. Lett., vol. 98, no. 25, pp. 22–25, 2007.
  • T. Cubaud and C. M. Ho, “Transport of bubbles in square microchannels,” Phys. Fluids, vol. 16, no. 12, pp. 4575–4585, 2004.
  • W. X. Tian et al., “Numerical simulation on collapse of vapor bubble using particle method,” Heat Transf. Eng., vol. 35, no. 6–8, pp. 753–763, 2014.
  • G. Kähler, F. Bonelli, G. Gonnella, and A. Lamura, “Cavitation inception of a Van der Waals fluid at a sack-wall obstacle,” Phys. Fluids, vol. 27, no. 12, pp. 123307, 25 p., 2015.
  • F. I. Azam, B. Karri, S.-W. Ohl, E. Klaseboer, and B. C. Khoo, “Dynamics of an oscillating bubble in a narrow gap,” Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., vol. 88, no. 4, pp. 043006, 7 p., 2013.
  • Y. Ye and G. Li, “Modeling of hydrodynamic cavitating flows considering the bubble-bubble interaction,” Int. J. Multiphase Flow, vol. 84, pp. 155–164, 2016.
  • M. M. Awad and Y. S. Muzychka, “Two-phase flow modeling in microchannels and minichannels,” Heat Transf. Eng., vol. 31, no. 13, pp. 1023–1033, 2010.
  • F. Khatami, E. Van Der Weide, and H. Hoeijmakers, “Multiphase thermodynamic tables for efficient numerical simulation of cavitating flows: a novel Look-Up approach toward efficient and accurate tables,” Heat Transf. Eng., vol. 36, no. 12, pp. 1065–1083, 2015.
  • N. Shao, A. Gavriilidis, and P. Angeli, “Effect of inlet conditions on taylor bubble length in microchannels,” Heat Transf. Eng., vol. 32, no. 13–14, pp. 1117–1125, 2011.
  • C. E. Brennen, Cavitation and Bubble Dynamics. Cambridge, England: Cambridge University Press, 2013.
  • G. R. Mcnamara and G. Zanetti, “Use of the Boltzmann equation to simulate lattice gas automata,” Phys. Rev. Lett., vol. 61, no. 20, pp. 2332–2335, 1988.
  • N. Martys, X. Shan, and H. Chen, “Evaluation of the external force term in the discrete Boltzmann equation,” Phys. Rev. E, vol. 58, no. 5, pp. 6855–6857, 1998.
  • Y. H. Qian, D. D’Humières, and P. Lallemand, “Lattice BGK models for Navier-Stokes equation,” Europhys. Lett., vol. 17, no. 6, pp. 479–572, 1992.
  • A. L. Kupershtokh and D. A. Medvedev, “Lattice Boltzmann equation method in electrohydrodynamic problems,” J. Electrostat., vol. 64, no. 7–9, pp. 581–585, 2006.
  • M. C. Sukop and D. T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Berlin Heidelberg: Springer-Verlag, 2006.
  • S. Son, L. Chen, D. Derome, and J. Carmeliet, “Numerical study of gravity-driven droplet displacement on a surface using the pseudopotential multiphase lattice Boltzmann model with high density ratio,” Comput. Fluids, vol. 117, pp. 42–53, 2015.
  • A. A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes. London: Springer-Verlag, 2011.
  • C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH image to ImageJ: 25 years of image analysis,” Nat. Methods, vol. 9, no. 7, pp. 671–675, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.