277
Views
8
CrossRef citations to date
0
Altmetric
Articles

Effect of Thermal Conductivity on Cooling of Square Heat Source Array under Natural Convection in a Vertical Channel

, &

References

  • C.-S. Sharma et al., “Energy efficient hotspot-targeted embedded liquid cooling of electronics,” Appl. Energ., vol. 138, no. Supplement C, pp. 414–422, Jan. 2015. doi:10.1016/j.apenergy.2014.10.068.
  • M. Keyhani, V. Prasad, and R. Cox, “An experimental study of natural convection in a vertical cavity with discrete heat sources,” J. Heat Transf., vol. 110, no. 3, pp. 616–624, Aug. 1988. doi:10.1115/1.3250537.
  • M. A. Habib, S. A. M. Said, and T. Ayinde, “Characteristics of natural convection heat transfer in an array of discrete heat sources,” Exp. Heat Transf., vol. 27, no. 1, pp. 91–111, March 2014. doi:10.1080/08916152.2012.731473.
  • T. K. Hotta, and S. P. Venkateshan, “Optimal distribution of discrete heat sources under natural convection using ANN-GA based technique,” Heat Transf. Eng., vol. 36, no. 2, pp. 200–211, 2015. doi:10.1080/01457632.2014.909222.
  • T. K. Hotta, C. Balaji, and S. P. Venkateshan, “Experiment driven ANN-GA based technique for optimal distribution of discrete heat sources under mixed convection,” Exp. Heat Transf., vol. 28, no. 3, pp. 298–315, 2015. doi:10.1080/08916152.2013.871867.
  • M. Gavara and P. R. Kanna, “Three-dimensional study of natural convection in a horizontal channel with discrete heaters on one of its vertical walls,” Heat Transf. Eng., vol. 35, no. 14–15, pp. 1235–1245, Dec. 2014. doi:10.1080/01457632.2013.876784.
  • G. Nardini, M. Paroncini, and F. Carvaro, “Effect of heat transfer on natural convection in a square cavity with two source pairs,” Heat Transf. Eng., vol. 35, no. 9, pp. 875–886, 2014. doi:10.1080/01457632.2014.85290.
  • M. Sankar, Y. Do, S. Ryu, and B. Jang, “Cooling of heat sources by natural convection heat transfer in a vertical annulus,” Numer. Heat Transf. Part A: Appl., vol. 68, no. 8, pp. 847–869, June 2015. doi:10.1080/10407782.2015.1023097.
  • S. G. Kandlikar, “High flux heat removal with microchannels – a roadmap of challenges and opportunities,” Heat Transf. Eng., vol. 26, no. 8, pp. 5–14, 2005. doi:10.1080/01457630591003655.
  • M. G. Ghorab, “Forced convection analysis of discrete heated porous convergent channel,” Heat Transf. Eng., vol. 36, no. 9, pp. 829–846, 2015. doi:10.1080/01457632.2015.963439.
  • Y. Joshi, T. Wilson, and S. J. Hazard, “An experimental study of natural convection cooling of an array of heated protrusions in a vertical channel in water,” J. Electron. Packag., vol. 111, no. 1, pp. 33–40, March 1989. doi:10.1115/1.3226506.
  • T. K. Hotta, and S. P. Venkateshan, “Natural and mixed convection heat transfer cooling of discrete heat sources placed near the bottom on a PCB,” Proc. World Acad. Sci. Eng. Technol., vol. 6, pp. 266–273, 2012.
  • T. K. Hotta, P. Muvvala, and S. P. Venkateshan, “Effect of surface radiation heat transfer on the optimal distribution of discrete heat sources under natural convection,” Heat Mass Transf., vol. 49, no. 2, pp. 207–217, Feb. 2013. doi:10.1007/s00231-012-1072-0.
  • A. Bazylac, N. Djilali, and D. Sinton, “Natural convection in an enclosure with distributed heat sources,” Numer. Heat Transf. Part A: Appl., vol. 49, no. 7, pp. 655–667, 2006. doi:10.1080/10407780500343798.
  • H. H. S. Chu, S. W. Churchill, and C. V. S. Patterson, “The effect of heater size, location, aspect ratio, and boundary conditions on two-dimensional, laminar, natural convection in rectangular channels,” J. Heat Transf., vol. 98, no. 2, pp. 194–201, May 1976. doi:10.1115/1.3450518.
  • T. C. Hung, “A conceptual design of thermal modeling for efficiently cooling an array of heated devices under low Reynolds numbers,” Numer. Heat Transf. Part A: Appl., vol. 39, no. 4, pp. 361–382, 2001. doi:10.1080/10407780151063151.
  • R. P. Soni, and M. R. Gavara, “Natural convection in a cavity surface mounted with discrete heaters and subjected to different cooling configurations,” Numer. Heat Transf. Part A: Appl., vol. 70, no. 1, pp. 79–102, 2016. doi:10.1080/10407782.2016.1173429.
  • A. Muftuoglu, and E. Bilgen, “Natural convection in an open square cavity with discrete heaters at their optimized positions,” Int. J. Therm. Sci., vol. 47, no. 4, pp. 369–377, April 2008. doi:10.1016/j.ijthermalsci.2007.03.015.
  • G. Desrayaud, A. Fichera, and G. Lauriat, “Natural convection air-cooling of a substrate mounted protruding heat source in a stack of parallel boards,” Int. J. Heat Fluid Flow, vol. 28, no. 3, pp. 469–482, June 2007. doi:10.1016/j.ijheatfluidflow.2006.07.003.
  • M. Bakkas, A. Amahmid, and M. Hasnaoui, “Numerical study of natural convection heat transfer in a horizontal channel provided with rectangular bocks releasing uniform heat flux and mounted on its lower wall,” Energy Convers. Manag., vol. 49, no. 10, pp. 2757–2766, Oct. 2008. doi:10.1016/j.enconman.2008.03.017.
  • L. F. Jin, K. W. Tou, and C. P. Tso, “Effects of rotation on natural convection cooling from three rows of heat sources in a rectangular cavity,” Int. J. Heat Mass Transf., vol. 48, no. 19–20, pp. 3982–3994, Sept. 2005. doi:10.1016/j.ijheatmasstransfer.2005.04.013.
  • P. N. Madhavan and V. M. K. Sastri, “Conjugate natural convection cooling of protruding heat sources mounted on a substrate placed inside an enclosure: a parametric study,” Comput. Methods Appl. Mech. Eng., vol. 188, no. 1–3, pp. 187–202, July 2000. doi:10.1016/S0045-7825(99)00147-4.
  • T. J. Heindel, S. Ramadhyani, and F. P. Incropera, “Conjugate natural convection from an array of protruding heat sources,” Numer. Heat Transf. Part A: Appl., vol. 29, no. 1, pp. 1–18, 1996. doi:10.1080/10407789608913775.
  • S. B. Sathe and Y. Joshi, “Natural convection liquid cooling of a substrate-mounted protrusion in a square enclosure: a parametric study,” ASME J. Heat Transf., vol. 114, no. 2, pp. 401–409, May 1992. doi:10.1115/1.2911288.
  • V. H. Adams, Y. Joshi, and D. L. Blackbum, “Three-dimensional study of combined conduction, radiation, and natural convection from discrete heaters,” J. Heat Transf., vol. 121, no. 4, pp. 992–1001, Nov. 1999. doi:10.1115/1.2826091.
  • Y. L. Tsay, J. C. Cheng, and Z. P. Chiu, “Characteristics and enhancement of heat transportation from a block heat source module in three-dimensional cabinets to an ambient natural convective air stream,” Numer. Heat Transf. Part A: Appl., vol. 61, no. 1, pp. 18–37, 2012. doi:10.1080/10407782.2012.631379.
  • A. Raji, M. Hasnaoui, and A. Bahlaoui, “Numerical study of natural convection dominated heat transfer in a ventilated cavity: case of forced flow playing simultaneous assisting and opposing roles,” Int. J. Heat Fluid Flow, vol. 29, no. 4, pp. 1174–1181, Aug. 2008. doi:10.1016/j.ijheatfluidflow.2008.01.010.
  • T. Dias Jr and L. F. Milanez, “Optimal location of heat sources on a vertical wall with natural convection through genetic algorithms,” Int. J. Heat Mass Transf., vol. 49, no. 13–14, pp. 2090–2096, July 2006. doi:10.1016/j.jheatmasstransfer,2005.11.031.
  • R. H. Hernandez, “Natural convection in thermal plumes emerging from a single heat source,” Int. J. Therm. Sci., vol. 98, pp. 81–89, Dec. 2015. doi:10.1016/jijthermalsci.2015.06.010.
  • G. R. Ahmed, and M. Yovanovich, “Numerical study of natural convection from discrete heat sources in a vertical square enclosure,” J. Thermophys. Heat Transf., vol. 6, no. 1, pp. 121–127, Jan. 1992. doi:10.2514/3.326.
  • J. C. Cheng, Y. L. Tsay, and Z. D. Chan, “Heat transfer from block heat sources mounted on the wall of a 3d cabinet to an ambient natural convective air stream,” Numer. Heat Transf. Part A: Appl., vol. 69, no. 3, pp. 283–294, 2016. doi:10.1080/10407782.2015.1069673.
  • D. D. Zhang, L. Wang, D. Liu, F. Y. Zhao, and H. Q. Wang, “Free convective energy management of an inclined enclosure mounted with triple heating elements: multiple morphology optimizations with unique global energy supply,” Int. J. Heat Mass Transf., vol. 115, pp. 406–420, Dec. 2017. doi:10.1016/j.ijheatmasstransfer.2017.07.054.
  • T. V. V. Sudhakar, C. Balaji, and S. P. Venkateshan, “A heuristic approach to optimal arrangement of multiple heat sources under conjugate natural convection,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 431–444, Jan. 2010. doi:10.1016/j.ijheatmasstransfer.2009.09.013.
  • M. L. Chadwick, B. W. Webb, and H. S. Heaton, “Natural convection from two-dimensional discrete heat sources in a rectangular enclosure,” Int. J. Heat Mass Transf., vol. 34, no. 7, pp. 1679–1693, July 1991. doi:10.1016/0017-9310(91)90145-5.
  • C. J. Ho and J. Y. Chang, “A study of natural convection heat transfer in a vertical rectangular enclosure with two-dimensional discrete heating: effect of aspect ratio,” Int. J. Heat Mass Transf., vol. 37, no. 6, pp. 917–925, 1994. doi:10.1016/0017-9310(94)90217-8.
  • T. J. Heindel, F. P. Incropera, and S. Ramadhyani, “Enhancement of natural convection heat transfer from an array of discrete heat sources,” Int. J. Heat Mass Transf., vol. 39, no. 3, pp. 479–490, Feb. 1996. doi:10.1016/0017-9310(95)00153-Z.
  • C. P. Tso, L. F. Jin, S. K. W. Tou, and X. F. Zhang, “Flow pattern evolution in natural convection cooling from an array of discrete heat sources in a rectangular cavity at various orientations,” Int. J. Heat Mass Transf., vol. 47, no. 19–20, pp. 4061–4073, Sept. 2004. doi:10.1016/j.ijheatmasstransfer.2004.05.022.
  • A. Baudoin, D. Saury, and C. Bostrm, “Optimized distribution of a large number of power electronics components cooled by conjugate turbulent natural convection,” Appl. Therm. Eng., vol. 124, no. Supplement C, pp. 975–985, Sept. 2017. doi:10.1016/j.appithermaleng.2017.06.056.
  • S. Durgam, S. P. Venkateshan, and T. Sundararajan, “A novel concept of discrete heat source array with dummy components cooled by forced convection in a vertical channel,” Appl. Therm. Eng., vol. 129, pp. 979–994, Jan. 2018. doi:10.1016/j.applthermaleng.2017.01.061.
  • S. Durgam, S. P. Venkateshan, and T. Sundararajan, “Experimental and numerical investigations on optimal distribution of heat source array under natural and forced convection in a horizontal channel,” Int. J. Therm. Sci., vol. 115, pp. 125–138, May 2017. doi:10.1016/j.ijthermalsci.2017.01.017.
  • S. P. Venkateshan, Mechanical Measurements, 2nd ed. Chichester, West Sussex, UK: Wiley, 2015.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New York, NY: McGraw-Hill, 1980.
  • COMSOL, Inc., COMSOL Multiphysics Software Manual, version 4.3b. Burlington, MA, USA: COMSOL, Inc., 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.