703
Views
12
CrossRef citations to date
0
Altmetric
Articles

Experimental Investigation on Heat Spreader Integrated Microchannel Using Graphene Oxide Nanofluid

, &

References

  • G. E. Moore, “Cramming more components onto integrated circuits,” Proc. IEEE, vol. 86, no. 1, pp. 82–85, 1998. DOI: 10.1109/JPROC.1998.658762.
  • M. Gad-Ed-Hak, “The fluid mechanics of microdevices- the freeman scholar lecture,” J. Fluid Eng., vol. 121, no.1, pp. 5–33, 1999.
  • D. B. Tuckerman, and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett., vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1109/EDL.1981.25367.
  • A. Abdollahi, R. N. Sharma, H. A. Mohammed, and A. Vatani, “Heat transfer and flow analysis of Al2O3-water nanofluids in interrupted microchannel heat sink with ellipse and diamond ribs in the transverse microchambers,” Heat Transf. Eng., vol. 39, no. 16, pp. 1461–1469, 2018.
  • O. O. Adewami, T. Bello-Ochende, and J. P. Meyer, “Numerical investigation into the thermal performance of single microchannels with varying axial length and different shaped of micropin- fin inserts,” Heat Transf. Eng., vol. 38, no. 13, pp. 1157–1170, 2017. DOI: 10.1080/01457632.2016.1239927.
  • S. R. Reddy et al., “Multi objective optimization for cooling of high heat flux electronics with a hot spot,” Heat Transf. Eng., vol. 38, no. 14–15, pp. 1235–1246, 2017. DOI: 10.1080/01457632.2016.1242953.
  • H. V. Moradi, and J. M. Floryan, “Maximization of heat transfer across micro-channels,” Int. J. Heat Mass Transf., vol. 66, pp. 517–530, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.059.
  • A. Sakanova, C. C. Keian, and J. Zhao, “Performance improvements of microchannel heat sink using wavy channel and nanofluids,” Int. J. Heat Mass Transf., vol. 89, pp. 59–74, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.05.033.
  • J. P. McHale, and S. V. Garimella, “Heat transfer in trapezoidal microchannels of various aspect ratios,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 365–375, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.09.020.
  • H. Y. Wu, and P. Cheng, “Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios,” Int. J. Heat Mass Transf., vol. 46, no. 14, pp. 2519–2525, 2003. DOI: 10.1016/S0017-9310(03)00106-6.
  • V. Glazar, B. Frankovic, and A. Trp, “Experimental and numerical study of the compact heat exchanger with different microchannel shapes,” Int. J. Refrigeration, vol. 51, pp. 144–153, 2015. DOI: 10.1016/j.ijrefrig.2014.06.017.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments Applications of Non-Newtonian Flows, vol. 66, D. A. Signer and H. P. Wang, Eds. New York: ASME, 1995, pp. 99–105.
  • J. Koo, and C. Kleinstreuer, “Laminar nanofluid flow in microheat-sinks,” Int. J. Heat Mass Transf., vol. 48, no. 13, pp. 2652–2661, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.01.029.
  • P. Bhattacharya, A. N. Samanta, and S. Chakraborty, “Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid,” Heat Mass Transf., vol. 45, no. 10, pp. 1323–1333, 2009. DOI: 10.1007/s00231-009-0510-0.
  • M. Azimi, and A. Mozaffari, “Heat transfer analysis of unsteady graphene oxide nanofluid flow using a fuzzy identifier evolved by genetically encoded mutable smart bee algorithm,” Eng. Sci. Technol. Int. J., vol. 18, no. 1, pp. 106–123, 2015.vol DOI: 10.1016/j.jestch.2014.10.002.
  • W. Yu, H. Xie, and D. Bao, “Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets,” Nanotechnology, vol. 21, no. 5, pp. 055705, 2010. DOI: 10.1088/0957-4484/21/5/055705.
  • M. N. M. Zubir et al., “Highly dispersed reduced graphene oxide and its hybrid complexes as effective additives for improving thermophysical property of heat transfer fluid,” Int. J. Heat Mass Transf., vol. 87, pp. 284–294, 2015.
  • V. M. Siva, A. Pattamatta, and S. K. Das, “Effect of flow maldistribution on the thermal performance of parallel microchannel cooling systems,” Int. J. Heat Mass Transf., vol. 73, pp. 424–428, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.02.017.
  • G. Kumaraguruparan, R. M. Kumaran, T. Sornakumar, and T. Sundararajan, “A numerical and experimental investigation of flow maldistribution in a micro-channel heat sink,” Int. Commun. Heat Mass Transf., vol. 38, no. 10, pp. 1349–1353, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.08.020.
  • R. M. Kumaran, G. Kumaraguruparan, and T. Sornakumar, “Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels,” Appl. Therm. Eng., vol. 58, no. 1–2, pp. 205–216, 2013. DOI: 10.1016/j.applthermaleng.2013.04.026.
  • S. A. Solovitz, “Analysis of parallel microchannels for flow control and hot spot cooling,” J. Thermal Sci. Eng. Appl., vol. 5, no. 4, pp. 041007, 2013. DOI: 10.1115/1.4024021.
  • L. S. Maganti, P. Dhar, T. Sundararajan, and S. K. Das, “Heat spreader with parallel microchannel configurations employing nanofluids for near–active cooling of MEMS,” Int. J. Heat Mass Transf., vol. 111, pp. 570–581, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.032.
  • L. S. Maganti, P. Dhar, T. Sundararajan, and S. K. Das, “Thermally “smart” characteristics of nanofluids in parallel microchannel systems to mitigate hot spots in MEMS,” IEEE Trans. Compon. Packag. Technol., vol. 6, no. 12, pp. 1834–1846, 2016. DOI: 10.1109/TCPMT.2016.2619939.
  • C. Anbumeenakshi, and M. R. Thansekhar, “Experimental investigation of header shape and inlet configuration on flow maldistribution in microchannel,” Exp. Therm. Fluid Sci., vol. 75, pp. 156–161, 2016. DOI: 10.1016/j.expthermflusci.2016.02.004.
  • S. R. Reddy, and G. S. Dulikravich, “Inverse design of cooling arrays of micro pin-fins subject to specified coolant inlet temperature and hot spot temperature,” Heat Transf. Eng., vol. 38, no. 13, pp. 1147–1156, 2017. DOI: 10.1080/01457632.2016.1239924.
  • C. S. Sharma et al., “A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: An experimental study,” Int. J. Heat Mass Transf., vol. 88, pp. 684–694, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.047.
  • F. Alfieri et al., “Computational modelling of hot spot identification and control in 3D stacked chips with integrated cooling,” Numer. Heat Transf. Part A, vol. 65, no. 3, pp. 201–215, 2014. DOI: 10.1080/10920277.2013.826480.
  • J. Zhang, T. Zhang, S. Prakash, and Y. Jaluria, “Experimental and numerical study of transient electronic chip cooling by liquid flow in microchannel heat sinks,” Numer. Heat Transf. Part A, vol. 65, no. 7, pp. 627–643, 2014. DOI: 10.1080/10407782.2013.846594.
  • C. Kinkelin et al., “Theoretical and experimental study of a thermal damper based on a CNT/PCM composite structure for transient electronic cooling,” Energy Convers. Manag., vol. 42, pp. 257–271, 2017. DOI: 10.1016/j.enconman.2017.03.034.
  • A. Bar-Cohen, M. Arik, and M. Ohadi, “Direct liquid cooling of high flux micro and nano electronics components,” Proc. IEEE, vol. 94, no. 8, pp. 1549–1570, 2006. DOI: 10.1109/JPROC.2006.879791.
  • A. M. A. Soliman, and H. Hassan, “3D study on the performance of cooling technique composed of heat spreader and microchannels for cooling the solar cells,” Energy Convers. Manag., vol. 170, pp. 1–18, 2018. DOI: 10.1016/j.enconman.2018.05.075.
  • M. A. Soliman, H. Hassan, M. Ahmed, and S. Oakawara, “A 3D model of the effect of using heat spreader on the performance of photovoltaic panel (PV),” Math. Comput. Simul., 2018. DOI: 10.1016/j.matcom.2018.05.011.
  • Y. Lee, S. Park, C. Byun, and S. K. Lee, “Liquid cooling of laser-driven head light employing heat spreader manufactured by 3D metal printing,” Int. J. Precis. Eng. Manuf.-Green Tech., vol. 5, no. 2, pp. 295–301, 2018. DOI: 10.1007/s40684-018-0031-8.
  • B. Kelly, Y. Hayashi, and Y. J. Kim, “Novel radial pulsating heat pipe for high heat flux thermal spreading,” Int. J. Heat Mass Transf., vol. 121, pp. 97–106, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.107.
  • Y. Han, B. L. Lau, G. Tang, and X. Zhang, “Thermal management of hotspots using diamond heat spreader on Si-micro cooler for GaN devices,” IEEE Trans. Compon. Package. Technol., vol. 5, no. 5, 2015.
  • L. S. Maganti, P. Dhar, T. Sundarajan, and S. K. Das, ” “Mitigating non-uniform heat generation induced hotspots in multicore processor using heat generation induced hotspots in multicore processor using nanofluids in parallel microchannels,” Int. J. Therm. Sci., vol. 125, pp. 185–196, 2018. DOI: 10.1016/j.ijthermalsci.2017.11.015.
  • P. Wang, B. Yang, and A. Bar-Cohen, “Mini-contact enhanced thermoelectric coolers for on-chip hotspot cooling,” Heat Transf. Eng., vol. 30, no. 9, pp. 736–743, 2009. DOI: 10.1080/01457630802678391.
  • A. Bar-Cohen, and P. Wang, “Thermal management of on-chip hotspot,” J. Heat Transf., vol. 134, no. 5, pp. 05107, 2012.
  • D. Ansari, and K. Y. Kim, “Hotspot thermal management using a microchannel-pinfin hybrid heat sink,” Int. J. Thermal Sci., vol. 134, pp. 27–39, 2018. DOI: 10.1016/j.ijthermalsci.2018.07.043.
  • Y. Pi, J. Chen, M. Miao, Y. Jin, and W. Wang, “A fast and accurate temperature prediction method for microfluidic cooling with multiple distributed hotspots,” Int. J. Heat Mass Transf., vol. 127, pp. 1223–1232, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.127.
  • K. P. Drummond, J. A. Weibel, S. V. Garimella, D. Black, D. B. Janes, and M. D. Sinanis, “Evaporative intrachip hotspot cooling with a hierarchical manifold microchannel heat sink array,” in Thermal and Thermo mechanical Phenomenon in Electronic Systems, 2016. Fifteenth Intersociety IEEE conference, Los Vegas, NV, USA, 31 May 2016, pp. 307–315.
  • A. Abdoli, G. S. Dulikravich, G. Vasquez, and S. Rastkar, “Thermo-fluid stress-deformation analysis of two-layer microchannels for cooling chips with hotspots,” J. Electron. Packag., vol. 137, no. 3, pp. 031003, 2015. DOI: 10.1115/1.4030005.
  • D. Lorenzini, Y. K. Joshi, and G. W. Wooddruff, “CFD study of flow boiling in silicon microgaps with staggered pin fins for 3D-stacking of ICS” in Thermal and Thermo mechanical Phenomenon in Electronic Systems, 2016. Fifteenth Intersociety IEEE conference, Los Vegas, NV, USA, 31 May 2016, pp. 766–773.
  • Y. L. Lee, P. K. Singh, and P. S. Lee, “Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study,” Int. J. Heat Mass Transf., vol. 81, pp. 325–336, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.018.
  • C. Green, A. G. Fedorov, and Y. K. Joshi, “Fluid-to fluid spot-to-spreader (F2/S2) hybrid heat sink for integrated chip level and hot spot-level thermal management,” J. Electron. Packag., vol. 131, no. 2, pp. 025002, 2009. DOI: 10.1115/1.3104029.
  • W. S. Hummers, and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc., vol. 80, no. 6, pp. 1339, 1958. DOI: 10.1021/ja01539a017.
  • M. Sreejesh, S. Dhanush, F. Rossignol, and H. S. Nagaraja, “Microwave assisted synthesis of rGO/ZnO composites for non-enzymatic glucose sensing and supercapacitor applications,” Ceram. Int., vol. 43, no. 6, pp. 4895–4903, 2017.vol DOI: 10.1016/j.ceramint.2016.12.140.
  • B. C. Pak, and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle,” Exp. Heat Transf., vol. 11, no. 2, pp. 151–170, 1998.DOI: 10.1080/08916159808946559.
  • Y. Xuan, and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3701–3707, 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • H. C. Brinkman, “The Viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571, 1952. DOI: 10.1063/1.1700493.
  • R. L. Hamilton, and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fund., vol. 1, no. 3, pp. 187–191, 1962. DOI: 10.1021/i160003a005.
  • T. T. Baby, and S. Ramaprabhu, “Enhanced convective heat transfer using graphene dispersed nanofluids,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 289–297, 2011.
  • H. W. Coleman, and W. G. Steele, Experimentation, Validation and Uncertainty Analysis for Engineers, 3rd ed. Hoboken, NJ: John Wiley & Sons, July 2009.
  • M. Mirzaei, and A. Azimi, “Heat transfer and pressure drop characteristics of graphene oxide/water nanofluid in circular fitted with wire coil inserts,” Exp. Heat Transf., vol. 29, no. 2, pp. 173–187, 2016. DOI: 10.1080/08916152.2014.973975.
  • S. B. Choi, R. F. Barron, and R. O. Warrington, “Fluid flow and heat transfer in microtubes,” Proc. ASME, vol. 32, pp. 123–134, 1991.
  • X. F. Peng, and G. P. Peterson, “Convective heat transfer and fluid friction for water flow in microchannel structures,” Int. J. Heat Mass Transf., vol. 39, no. 12, pp. 2599–2608, 1996. DOI: 10.1016/0017-9310(95)00327-4.
  • B. X. Wang, and X. F. Peng, “Experimental investigation on liquid forced convection heat transfer through microchannel,” Int. J. Heat Mass Transf., vol. 37, no. suppl. 1, pp. 73–82, 1994. DOI: 10.1016/0017-9310(94)90011-6.
  • J. Y. Jung, H. S. Oh, and H. Y. Kwak, “Forced convective heat transfer of nanofluids in microchannels,” Int. J. Heat Mass Transf., vol. 52, no. 1–2, pp. 466–472, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.03.033.
  • W. Qu, Gh, M. Mala, and D. Li, “Heat transfer for water in trapezoidal silicon microchannel,” Int. J. Heat Mass Transf., vol. 43, no. 21, pp. 3925–3936, 2000. DOI: 10.1016/S0017-9310(00)00045-4.
  • X. F. Peng, B. X. Wang, G. P. Peterson, and H. B. Ma, “Experimental investigation of heat transfer in flat plates with rectangular microchannels,” Int. J. Heat Mass Transf., vol. 38, no. 1, pp. 127–137, 1995. DOI: 10.1016/0017-9310(94)00136-J.
  • P. Rosa, T. G. Karayiannis, and M. W. Collins, “Single- phase heat transfer in microchannels: The importance of scaling effects,” Appl. Therm. Eng., vol. 29, no. 17–18, pp. 3447–3468, 2009.DOI: 10.1016/j.applthermaleng.2009.05.015.
  • M. Asadi, G. Xie, and B. Sunden, “A review of heat transfer and pressure drop characteristics of single and two-phase microchannels,” Int. J. Heat Mass Transf., vol. 79, pp. 34–53, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.090.
  • W. Yu, and H. Xie, “A review on nanofluids: Preparation, stability, mechanisms and applications,” J. Nanomater., vol. 2012, no. 435873, pp. 1–17, 2011.DOI: 10.1155/2012/435873.
  • S. K. Das, S. U. S. Choi, and H. E. Patel, “Heat transfer in nanofluid- A review,” Heat Transf. Eng., vol. 27, no. 10, pp. 3–19, 2006. DOI: 10.1080/01457630600904593.
  • A. Ebrahmi, F. Rikhtegar, A. Sabaghan, and E. Roohi, “Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids,” Energy, vol. 101, pp. 190–201, 2016. DOI: 10.1016/j.energy.2016.01.102.
  • H. Zhang, S. Shao, H. Xu, and C. Tian, “Heat transfer and flow features of Al2O3-water nanofluids flowing through a circular microchannel- Experimental results and correlations,” Appl. Therm. Eng., vol. 61, no. 2, pp. 86–92, 2013. DOI: 10.1016/j.applthermaleng.2013.07.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.