630
Views
10
CrossRef citations to date
0
Altmetric
Articles

Nanotextured Aluminum-Based Surfaces with Icephobic Properties

, , &

References

  • M. A. Rahman and A. M. Jacobi, “Condensation, frost formation, and frost melt-water retention characteristics on microgrooved brass surfaces under natural convection,” Heat Transf. Eng., vol. 34, no. 14, pp. 1147–1155, 2013. DOI: 10.1080/01457632.2013.776453.
  • S. Yoon, G. Hayase, and K. Cho, “Measurements of frost thickness and frost mass on a flat plate under heat pump condition,” Heat Transf. Eng., vol. 31, no. 12, pp. 965–972, 2010. DOI: 10.1080/01457631003638911.
  • New Zealand Civil Aviation Authority. Aircraft Icing Handbook, 1st ed. New Zealand: Civil Aviation Authority, 2000.
  • P. Eberle, M. K. Tiwari, T. Maitra, and D. Poulikakos, “Rational nanostructuring of surfaces for extraordinary icephobicity,” Nanoscale, vol. 6, no. 9, pp. 4874–4881, 2014. DOI: 10.1039/C3NR06644D.
  • K. Golovin et al., “Designing durable icephobic surfaces,” Sci. Adv., vol. 2, no. 3, pp. e1501496, 2016. DOI: 10.1126/sciadv.1501496.
  • H. Sojoudi, M. Wang, N. D. Boscher, G. H. McKinley, and K. K. Gleason, “Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces,” Soft Matter., vol. 12, no. 7, pp. 1938–1963, 2016. DOI: 10.1039/C5SM02295A.
  • T. M. Schutzius et al., “Physics of icing and rational design of surfaces with extraordinary icephobicity,” Langmuir, vol. 31, no. 17, pp. 4807–4821, 2015. DOI: 10.1021/la502586a.
  • E. Mitridis et al., “Metasurfaces leveraging solar energy for icephobicity,” ACS Nano, vol. 12, no. 7, pp. 7009–7017, 2018. DOI: 10.1021/acsnano.8b02719.
  • S. Dash, J. de Ruiter, and K. K. Varanasi, “Photothermal trap utilizing solar illumination for ice mitigation,” Sci. Adv., vol. 4, no. 8, pp. eaat0127–7, 2018. DOI: 10.1126/sciadv.aat0127.
  • M. J. Kreder, J. Alvarenga, P. Kim, and J. Aizenberg, “Design of anti-icing surfaces: Smooth, textured or slippery?,” Nat. Rev. Mater., vol. 1, no. 1, pp. 1–15, 2016.
  • L. Mishchenko et al., “Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets” ACS Nano, vol. 4, no. 12, pp. 7699–7707, 2010. DOI: 10.1021/nn102557p.
  • H. Saito, K. Takai, and G. Yamauchi, “Water and ice repellent coatings,” Surf. Coat. Int., vol. 80, no. 4, pp. 168–171, 1997. DOI: 10.1007/BF02692637.
  • S. A. Kulinich and M. Farzaneh, “Ice adhesion on super-hydrophobic surfaces,” Appl. Surf. Sci., vol. 255, no. 18, pp. 8153–8157, 2009. DOI: 10.1016/j.apsusc.2009.05.033.
  • S. B. Subramanyam, V. Kondrashov, J. Rühe, and K. K. Varanasi, “Low ice adhesion on nano-textured superhydrophobic surfaces under supersaturated conditions,” ACS Appl. Mater. Interfaces, vol. 8, no. 20, pp. 12583–12587, 2016. DOI: 10.1021/acsami.6b01133.
  • P. Tourkine, M. Le Merrer, and D. Quéré, “Delayed freezing on water repellent materials,” Langmuir, vol. 25, no. 13, pp. 7214–7216, 2009. DOI: 10.1021/la900929u.
  • Y. Wang, J. Xue, Q. Wang, Q. Chen, and J. Ding, “Verification of icephobic/anti-icing properties of a superhydrophobic surface,” ACS Appl. Mater Interfaces, vol. 5, no. 8, pp. 3370–3381, 2013. DOI: 10.1021/am400429q.
  • L. Cao, A. K. Jones, V. K. Sikka, J. Wu, and D. Gao, “Anti-icing superhydrophobic coatings,” Langmuir, vol. 25, no. 21, pp. 12444–12448, 2009. DOI: 10.1021/la902882b.
  • A. Alizadeh et al., “Dynamics of ice nucleation on water repellent surfaces,” Langmuir, vol. 28, no. 6, pp. 3180–3186, 2012. DOI: 10.1021/la2045256.
  • S. Jung, M. K. Tiwari, and D. Poulikakos, “Frost halos from supercooled water droplets,Proc. Natl Acad. Sci. USA, vol. 109, no. 40, pp. 16073–16078, 2012. DOI: 10.1073/pnas.1206121109.
  • T. Kikuchi et al., “Ultra-high density single nanometer-scale anodic alumina nanofibers fabricated by pyrophosphoric acid anodizing,” Sci. Rep., vol. 4, pp. 1–6, 2014.
  • W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater., vol. 5, no. 9, pp. 741–747, 2006. DOI: 10.1038/nmat1717.
  • C. Peng, Z. Chen, and M. K. Tiwari, “All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance,” Nat. Mater., vol. 17, no. 4, pp. 355–360, 2018. DOI: 10.1038/s41563-018-0044-2.
  • T. Maitra et al., “Supercooled water drops impacting superhydrophobic textures,” Langmuir, vol. 30, no. 36, pp. 10855–10861, 2014. DOI: 10.1021/la502675a.
  • D. Bartolo, C. Josserand, and D. Bonn, “Retraction dynamics of aqueous drops upon impact on non-wetting surfaces,” J. Fluid Mech., vol. 545, no. 1, pp. 329–338, 2005. DOI: 10.1017/S0022112005007184.
  • A. L. Yarin, “Drop impact dynamics: splashing, spreading, receding, bouncing…,” Annu. Rev. Fluid Mech., vol. 38, no. 1, pp. 159–192, 2006. DOI: 10.1146/annurev.fluid.38.050304.092144.
  • C. Clanet, C. Béguin, D. Richard, and D. Quéré, “Maximal deformation of an impacting drop,” J. Fluid Mech., vol. 517, pp. 199–208, 2004. DOI: 10.1017/S0022112004000904.
  • I. V. Roisman, R. Rioboo, and C. Tropea, “Normal impact of a liquid drop on a dry surface: model for spreading and receding,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 458, no. 2022, pp. 1411–1430, 2002. DOI: 10.1098/rspa.2001.0923.
  • T. Maitra et al., “On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature,” Nano Lett., vol. 14, no. 1, pp. 172–182, 2014. DOI: 10.1021/nl4037092.
  • H. R. Pruppacher, J. D. Klett, and P. K. Wang, Microphysics of Clouds and Precipitation. Dordrecht: D. Reidel Publishing Company, 1978.
  • R. Zhang, P. Hao, X. Zhang, and F. He, “Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature,” Int. J. Heat Mass Transf., vol. 122, pp. 395–402, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.076.
  • S. Jung et al., “Are superhydrophobic surfaces best for icephobicity?,” Langmuir, vol. 27, no. 6, pp. 3059–3066, 2011. DOI: 10.1021/la104762g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.