171
Views
1
CrossRef citations to date
0
Altmetric
Articles

Phase Transformation and the Heat and Mass Transfer in the Ice, Water and Brine System

, &

References

  • J. Quarini, “Ice-pigging to reduce and remove fouling and to achieve clean-in-place,” Appl. Thermal Eng., vol. 22, no. 7, pp. 747–753, 2002. DOI: 10.1016/S1359-4311(02)00019-4.
  • P. W. Egolf and M. Kauffeld, “From physical properties of ice slurries to industrial ice slurry applications,” Int. J. Refrig., vol. 28, no. 1, pp. 4–12, 2005.DOI: 10.1016/j.ijrefrig.2004.07.014.
  • M. Kauffeld, M. Wang, V. Goldstein, and K. Kasza, “Ice slurry applications,” Int. J. Refrig., vol. 33, no. 8, pp. 1491–1505, 2010. DOI: 10.1016/j.ijrefrig.2010.07.018.
  • A. Kamyar, S. M. Aminossadati, and C. R. Leonardi, “Thermo-hydrodynamics of a helical coil heat exchanger operated with a phase-change ice slurry as a refrigerant,” Heat Transfer Eng., vol. 40, no. 3-4, pp. 283–294, 2019. DOI: 10.1080/01457632.2018.1428989.
  • N. Bonyadi, S. K. Sömek, C. C. Özalevli, D. Baker, and İ. Tarı, “Numerical analysis of phase change material characteristics used in a thermal energy storage device,” Heat Transfer Eng., vol. 39, no. 3, pp. 268–276, 2018. DOI: 10.1080/01457632.2017.1295741.
  • I. Bellas and S. A. Tassou, “Present and future applications of ice slurries,” Int. J. Refrig., vol. 28, no. 1, pp. 115–121, 2005. DOI: 10.1016/j.ijrefrig.2004.07.009.
  • J. M. Wang and N. Kusumoto, “Ice slurry based thermal storage in multifunctional buildings,” Heat Mass Transf., vol. 37, no. 6, pp. 597–604, 2001. DOI: 10.1007/PL00005891.
  • G. L. Quarini, “Cleaning and separation in fluid flow conduits.” Patent Number: GB2358229, WO0151224, UK patent, 2001.
  • G. Quarini et al., “Transient thermal performance of ice slurries pumped through pipes,” Appl. Thermal Eng., vol. 50, no. 1, pp. 743–748, 2013. DOI: 10.1016/j.applthermaleng.2012.07.038.
  • G. Shire, G. Quarini, and T. Evans, “Pressure drop of flowing ice slurries in industrial heat exchangers,” Appl. Thermal Eng., vol. 29, no. 8-9, pp. 1500–1506, 2009. DOI: 10.1016/j.applthermaleng.2008.06.033.
  • D. Ash, “Ice pigging in narrow bore ducts.” Ph. D. thesis, Department of Mechanical Engineering, University of Bristol, 2012.
  • H. Müller-Steinhagenller-Steinhagen, M. R. Malayeri, and A. P. Watkinson, “Heat exchanger fouling: Mitigation and cleaning strategies,” Heat Transfer Eng., vol. 32, no. 3–4, pp. 189–196, 2011. DOI: 10.1080/01457632.2010.503108.
  • T. S. Evans, “Technical aspects of pipeline pigging with flowing ice slurries.” Phd thesis, Department of Mechanical Engineering, University of Bristol, 2007.
  • G. Shire, G. Quarini, T. Rhys, and T. Evans, “The anomalous pressure drop behaviour of ice slurries flowing through constrictions,” Int. J. Multiphase Flow, vol. 34, no. 5, pp. 510–515, 2008. DOI: 10.1016/j.ijmultiphaseflow.2007.11.007.
  • G. S. F. Shire, “The behaviour of ice pigging slurries.” Ph. D. thesis, Department of Mechanical Engineering, University of Bristol, 2006.
  • A. Hales et al., “Ice fraction measurement of ice slurries through electromagnetic attenuation,” Int. J. Refrig., vol. 47, pp. 98–104, 2014. DOI: 10.1016/j.ijrefrig.2014.06.004.
  • A. Hales et al., “The effect of salinity and temperature on electromagnetic wave attenuation in brine,” Int. J. Refrig., vol. 51, pp. 161–168, 2015. DOI: 10.1016/j.ijrefrig.2014.11.013.
  • A. Hales, “Ice slurry diagnostics through electromagnetic wave attenuation and other techniques.” Phd thesis, Department of Mechanical Engineering, University of Bristol, 2015.
  • E. J. Lucas, A. Hales, D. McBryde, X. Yun, and G. L. Quarini, “Noninvasive ultrasonic monitoring of ice pigging in pipes containing liquid food materials,” J. Food Process Eng., vol. 40, no. 1, pp. e12306, 2017. DOI: 10.1111/jfpe.12306.
  • E. J. Lucas, S. Brooks, A. Hales, D. McBryde, X. Yun, and G. L. Quarini, “Noninvasive monitoring by ultrasound of liquid foodstuff to ice slurry transitions within steel ducts and pipes,” J. Food Process Eng., vol. 40, no. 2, pp. e12415, 2017. DOI: 10.1111/jfpe.12415.
  • E. J. Lucas, “Non-invasive online monitoring and diagnostics of flowing ice suspensions using ultrasound.” Ph. D. thesis, Department of Mechanical Engineering, University of Bristol, 2016.
  • K. Matsumoto, M. Okada, T. Kawagoe, and C. Kang, “Ice storage system with water–oil mixture: Formation of suspension with high {IPF},” Int. J. Refrig., vol. 23, no. 5, pp. 336–344, 2000. DOI: 10.1016/S0140-7007(99)00073-0.
  • M. B. Lakhdar, R. Cerecero, G. Alvarez, J. Guilpart, D. Flick, and A. Lallemand, “Heat transfer with freezing in a scraped surface heat exchanger,” Appl. Thermal Eng., vol. 25, no. 1, pp. 45–60, 2005. DOI: 10.1016/j.applthermaleng.2004.05.007.
  • F. G. F. Qin, X. D. Chen, and A. B. Russell, “Heat transfer at the subcooled-scraped surface with/without phase change,” AIChE J., vol. 49, no. 8, pp. 1947–1955, 2003. DOI: 10.1002/aic.690490804.
  • J.-P. Bédécarrats, T. David, and J. Castaing-Lasvignottes, “Ice slurry production using supercooling phenomenon,” Int. J. Refrig., vol. 33, no. 1, pp. 196–204, 2010. DOI: 10.1016/j.ijrefrig.2009.08.012.
  • B. Kim, H. Shin, Y. Lee, and J. Jurng, “Study on ice slurry production by water spray,” Int. J. Refrig., vol. 24, no. 2, pp. 176–184, 2001. DOI: 10.1016/S0140-7007(00)00013-X.
  • M. Hawlader, and M. Wahed, “Analyses of ice slurry formation using direct contact heat transfer,” Appl. Energy, vol. 86, no. 7-8, pp. 1170–1178, 2009. DOI: 10.1016/j.apenergy.2008.11.003.
  • N. Wijeysundera, M. Hawlader, C. W. B. Andy, and M. Hossain, “Ice-slurry production using direct contact heat transfer,” Int. J. Refrig., vol. 27, no. 5, pp. 511–519, 2004. DOI: 10.1016/j.ijrefrig.2004.03.007.
  • T. Kiatsiriroat, K. N. Thalang, and S. Dabbhasuta, “Ice formation around a jet stream of refrigerant,” Energy Convers. Manag., vol. 41, no. 3, pp. 213–221, 2000. DOI: 10.1016/S0196-8904(99)00112-0.
  • T. Kiatsiriroat, S. Vithayasai, N. Vorayos, A. Nuntaphan, and N. Vorayos, “Heat transfer prediction for a direct contact ice thermal energy storage,” Energy Convers. Manag., vol. 44, no. 4, pp. 497–508, 2003. DOI: 10.1016/S0196-8904(02)00077-8.
  • S. Thongwik, N. Vorayos, T. Kiatsiriroat, and A. Nuntaphan, “Thermal analysis of slurry ice production system using direct contact heat transfer of carbon dioxide and water mixture,” Int. Commun. Heat Mass Transfer, vol. 35, no. 6, pp. 756–761, 2008. DOI: 10.1016/j.icheatmasstransfer.2008.02.007.
  • A. Leiper, D. Ash, D. McBryde, and G. Quarini, “Improving the thermal efficiency of ice slurry production through comminution,” Int. J. Refrig., vol. 35, no. 7, pp. 1931–1939, 2012. DOI: 10.1016/j.ijrefrig.2012.05.017.
  • A. Leiper, E. Hammond, D. Ash, D. McBryde, and G. Quarini, “Energy conservation in ice slurry applications,” Appl. Thermal Eng., vol. 51, no. 1-2, pp. 1255–1262, 2013. DOI: 10.1016/j.applthermaleng.2012.11.044.
  • A. Leiper, “Carnot cycle optimisation of ice slurry production through comminution of bulk ice.” Ph. D. thesis, Department of Mechanical Engineering, University of Bristol, 2012.
  • X. Yun et al., “Ice formation in the subcooled brine environment,” Int. J. Heat Mass Transf., vol. 95, pp. 198–205, 2016.DOI: 10.1016/j.ijheatmasstransfer.2015.12.003.
  • X. Yun and G. L. Quarini, “Ice generation and the heat and mass transfer phenomena of introducing water to a cold bath of brine,” J. Vis. Exp., no. 121, pp. e55014, 2017. DOI: 10.3791/55014.
  • X. Yun, “The formation of ice by coupled heat and mass transfer within subcooled aqueous media.” Ph. D. thesis, Department of Mechanical Engineering, University of Bristol, 2017.
  • R. A. Paige, “Stalactite growth beneath sea ice,” Science, vol. 167, no. 3915, pp. 171–172, 1970. DOI: 10.1126/science.167.3915.171-a.
  • A. R. Miller, “High salinity in sea water,” Nature, vol. 203, no. 4945, pp. 590–591, 1964. DOI: 10.1038/203590a0.
  • H. Charnock, “Anomalous bottom water in the red sea,” Nature, vol. 203, no. 4945, pp. 591–591, 1964. DOI: 10.1038/203591a0.
  • J. C. Swallow and J. Crease, “Hot salty water at the bottom of the red sea,” Nature, vol. 205, no. 4967, pp. 165–166, 1965. DOI: 10.1038/205165a0.
  • S. Martin, “Ice stalactites: Comparison of a laminar flow theory with experiment,” J. Fluid Mech., vol. 63, no. 01, pp. 51–79, 1974.DOI: 10.1017/S0022112074001017.
  • K. Jeffs and D. Attenborough, Frozen Planet: Episode 5 ‘Winter’. BBC, Broadcasting House, London, 2011.
  • A. Fothergill, V. Berlowitz, and D. Attenborough, Frozen Planet: A World beyond Imagination, ch. Winter: Life Closes Down. BBC Books, Broadcasting House, London, 2011.
  • C. Packham, World’s Weirdest Events, Episode 8. BBC, Broadcasting House, London, 2015.
  • A. Bejan, S. Lorente, B. S. Yilbas, and A. Z. Sahin, “Why solidification has an s-shaped history,” Sci. Rep., vol. 3, no, no. 1711, pp. 1–5, 2013. DOI: 10.1038/srep01711.
  • A. Bejan and S. Lorente, “Constructal theory of generation of configuration in nature and engineering,” J. Appl. Phys., vol. 100, no. 4, pp. 041301, 2006. DOI: 10.1063/1.2221896.
  • S. Brooks, G. Quarini, X. Yun, and E. Lucas, “Effect of coil orientation on ice fraction produced by cooling brine flow in a helical coiled heat exchanger,” in 15th UK Heat Transfer Conference, UKHTC2017, Brunel University London, 2017, p. 48.
  • S. Brooks, G. Quarini, X. Yun, and E. Lucas, “Effect of flow direction on ice fraction produced by cooling brine flow in helical coiled heat exchanger,” in 15th UK Heat Transfer Conference, UKHTC2017, Brunel University London, 2017, p. 49.
  • G. L. Quarini, S. J. Brooks, X. Yun, and E. Lucas, “Modelling ice generation in a cooled pipe containing a flowing brine stream,” in 15th UK Heat Transfer Conference, UKHTC2017, Brunel University London, 2017, p. 143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.