2,428
Views
6
CrossRef citations to date
0
Altmetric
Articles

Modeling of In-Line Tube Banks Inside Advanced Gas-Cooled Reactor Boilers

, &

References

  • D. Linton and B. Thornber, “Direct numerical simulation of transitional flow in a staggered tube bundle,” Phys. Fluids, vol. 28, no. 2, pp. 024111, 2016. DOI: 10.1063/1.4942180.
  • E.D.F. Energy, “A new lease of life”. [Online]. Available: https://www.edfenergy.com/about/climate-change-solutions/plex.
  • E. Nonbøl, “Description of the advanced gas cooled type of reactor (AGR), Risø National Laboratory, Roskilde, Denmark.” [Online]. Available: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/28/028/28028509.pdf.
  • A. West, “Assessment of computational strategies for modelling in-line tube banks”, Ph.D. thesis, The University of Manchester, 2013
  • E. Achenbach, “Heat transfer from smooth and rough in-line tube banks at high Reynolds number,” Int. J. Heat Mass Transfer, vol. 34, no. 1, pp. 152–155, Feb. 1971. DOI: 10.1016/0017-9310(91)90186-I.
  • S. Ishigai and E. Nishikawa, “Structure of gas flow and its pressure loss in tube banks with tube axes normal to flow,” Trans. JSME, vol. 43, no. 373, pp. 3310–3319, 1977. DOI: 10.1299/kikai1938.43.3310.
  • P. Moretti, “Flow-induced vibrations in arrays of cylinders,” Annu. Rev. Fluid Mech., vol. 25, no. 1, pp. 99–114, 1993. DOI: 10.1146/annurev.fl.25.010193.000531.
  • I. Afgan, Y. Kahil, S. Benhamadouche, and P. Sagaut, “Large eddy simulation of the flow around single and two side-by-side cylinders at subcritical Reynolds numbers,” Phys. Fluids, vol. 23, no. 7, pp. 075101–075101, 2011. DOI: 10.1063/1.3596267.
  • S. S. Chen. “Flow-induced vibration of circular cylindrical structures”, Argonne National Lab. (ANL), no. ANL-85-51, pp. 418–461, 1985.
  • S. Ziada, “Vorticity shedding and acoustic resonance in tube bundles,” J. Braz. Soc. Mech. Sci. Eng., vol. 28, no. 2, pp. 186–199, 2006. DOI: 10.1590/S1678-58782006000200008.
  • S. Acharya, S. Dutta, T. A. Myrum, and R. S. Baker, “Periodically developed flow and heat transfer in a ribbed duct,” Int. J. Heat Mass Transfer, vol. 36, no. 8, pp. 2069–2082, 1993. DOI: 10.1016/S0017-9310(05)80138-3.
  • F. Archambeau, N. Méchitoua, and M. Sakiz, “Code saturne: a finite volume code for the computation of turbulent incompressible flows – industrial applications,” Int. J. Finite Volumes, vol. 1, no. 1, pp. 1–62, 2004.
  • W. P. Jones and B. E. Launder, “The prediction of laminarization with a 2-equation model of turbulence,” Int. J. Heat Mass Transfer, vol. 15, no. 2, pp. 301–314, Feb. 1972. DOI: 10.1016/0017-9310(72)90076-2.
  • R. Manceau, “Recent progress in the development of the Elliptic Blending Reynolds-stress model,” Int. J. Heat Fluid Flow, vol. 51, pp. 195–220, Feb. 2015. DOI: 10.1016/j.ijheatfluidflow.2014.09.002.
  • J. Smagorinsky, “General circulation experiments with the primitive equations,” Mon. Weather Rev., vol. 91, no. 3, pp. 99–164, Mar. 1963. DOI: 10.1175/1520-0493(1963)091 < 009:GCEWTP>2.3.CO;2.
  • M. Germano, U. Piomelli, P. Moin, and W. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids, vol. 3, no. 7, pp. 1760–1765, 1991. DOI: 10.1063/1.857955.
  • S. Aiba, H. Tsuchida, and T. Ota, “Heat transfer around tubes in inline tube banks,” Bull. JSME, vol. 25, no. 204, pp. 919–924, Jun. 1982. DOI: 10.1299/jsme1958.25.919.
  • K. Suga, T. J. Craft, and H. Iacovides, “An analytical wall-function for turbulent flows and heat transfer over rough walls,” Int. J. Heat Fluid Flow, vol. 27, no. 5, pp. 852–866, 2006. DOI: 10.1016/j.ijheatfluidflow.2006.03.011.
  • H. Blasius, “Boundary layers in fluids of small viscosity,” Z. Math. Physik, vol. 56, no. 1, pp. 1–37, 1908.
  • V. Guimet and D. R. Laurence, “A linearised turbulent production in the k-ε model for engineering applications”, presented at the 5th Engineering Turbulence Modelling and Measurements conference, Mallorca, Spain, December 2002, DOI: 10.1016/B978-008044114-6/50014-4.
  • F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” Am. Inst. Aeronaut. Astronaut., vol. 32, no. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.
  • D. R. Laurence, J. C. Uribe, and S. V. Utyuzhnikov, “A robust formulation of the v̅2-f model,” Flow Turbul. Combust., vol. 73, no. 3-4, pp. 169–185, 2005. DOI: 10.1007/s10494-005-1974-8.
  • P. Durbin, “Near-wall turbulence closure modelling without “damping functions,” Theor. Comp. Fluid Dyn., vol. 3, no. 1, pp. 1–13, 1991. DOI: 10.1007/BF00271513.
  • C. G. Speziale, S. Sarkar, and T. B. Gatski, “Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach,” J. Fluid Mech., vol. 227, pp. 245–272, Jun. 1991. DOI: 10.1017/S002211209100101.
  • R. Manceau, and K. Hanjalić, “Elliptic blending model: a new near-wall Reynolds-stress turbulence closure,” Phys. Fluids, vol. 14, no. 2, pp. 744–754, 2002. DOI: 10.1063/1.1432693.
  • B. E. Launder, and D. B. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng., vol. 3, no. 2, pp. 269–289, 1974. DOI: 10.1016/0045-7825(74)90029-2.
  • V. S. Arpaci and P. S. Larsen. Convection Heat Transfer. New York: Prentice Hall, 1984.
  • A. Gerasimov, “Development and validation of an analytical wall function strategy for modeling forced, mixed and natural convection flows”, Ph.D. thesis, University of Manchester, 2003
  • H. Kawamura, H. Abe, and Y. Matsuo, “DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects,” Int. J. Heat Fluid Flow, vol. 20, no. 3, pp. 196–207, 1999. DOI: 10.1016/S0142-727X(99)00014-4.
  • S. Hoyas and J. Jiménez, “Reynolds number effects on the Reynolds-stress budgets in turbulent channels,” Phys. Fluids, vol. 20, no. 10, pp. 101511, 2008. DOI: 10.1063/1.3005862.
  • R. Wejkowski, “Heat transfer and pressure loss in combined tube banks with triple-finned tubes,” Heat Transfer Eng., vol. 37, no. 1, pp. 45–52, 2016.DOI: 10.1080/01457632.2015.1042336.