226
Views
4
CrossRef citations to date
0
Altmetric
Articles

Steady and Unsteady Forced Convective Heat Transfer Analysis in 180 Degree Bend

&

References

  • Y. M. Chung, P. G. Tucker, and D. G. Roychowdhury, “Unsteady laminar flow and convective heat transfer in a sharp 180 bend,” Int. J. Heat Fluid Flow, vol. 24, no. 1, pp. 67–76, 2003. (02)00202-3. DOI: 10.1016/S0142-727X.
  • H. I. H. Saravanamuttoo, G. F. C. Rogers, P. Straznicky, A. C. Nix, and H. Cohen, Gas Turbine Theory. 7th ed., Edinburgh Gate, Harlow, UK: Pearson Education, 2017.
  • S. G. Kandlikar and Z. Lu, “Thermal management issues in a PEMFC stack–A brief review of current status,” Appl. Therm. Eng., vol. 29, no. 7, pp. 1276–1280, 2009. DOI: 10.1016/j.applthermaleng.2008.05.009.
  • K. P. Adzakpa et al., “Transient air cooling thermal modelling of a PEM fuel cell,” J. Power Sources, vol. 179, no. 1, pp. 164–176, 2008. DOI: 10.1016/j.jpowsour.2007.12.102.
  • S. K. Das and A. S. Bansode, “Heat and mass transport in proton exchange membrane fuel cells – A review,” Heat Transfer Eng., vol. 30, no. 9, pp. 691–719, 2009. DOI: 10.1080/01457630802677997.
  • L. Zhang and A. Pothérat, “Influence of the geometry on the two-and three-dimensional dynamics of the flow in a 180 sharp bend,” Phys. Fluids, vol. 25, no. 5, p. 053605 (29 pages), May 2013. DOI: 10.1063/1.4807070.
  • A. M. Sapardi, W. K. Hussam, A. Potherat, and G. J. Sheard, “Quasi-two-dimensional MHD duct flow around a 180-degree sharp bend in a strong magnetic field,” presented at the 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, Dec. 8–11, 2014.
  • S. Ravishankar and K. Arul Prakash, “Enhanced cooling of electronic components using fluid flow under high adverse pressure gradient,” J. Therm. Sci. Eng. Appl., vol. 7, no. 3, p. 031011 (10 pages), 2015. DOI: 10.1115/1.4026004.
  • H. Iacovides, D. Kounadis, and Z. Xu, “Experimental study of thermal development in a rotating square-ended U-bend,” Exp. Therm Fluid Sci., vol. 33, no. 3, pp. 482–494, 2009. DOI: 10.1016/j.expthermflusci.2008.11.010.
  • S. Mochizuki et al., “Detailed measurements of local heat transfer coefficients in turbulent flow through smooth and rib-roughened serpentine passages with a 180 sharp bend,” Int. J. Heat Mass Transfer, vol. 42, no. 11, pp. 1925–1934, 1999. DOI: 10.1016/S0017-9310(98)00308-1.
  • G. Xie and B. Sundén, “Numerical predictions of augmented heat transfer of an internal blade tip-wall by hemispherical dimples,” Int. J. Heat Mass Transfer, vol. 53, no. 25–26, pp. 5639–5650, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.08.019.
  • G. Xie, Gongnan, W. Zhang, and B. Sunden, “Computational analysis of the influences of guide ribs/vanes on enhanced heat transfer of a turbine blade tip-wall,” Int. J. Therm. Sci., vol. 51, pp. 184–194, 2012. DOI: 10.1016/j.ijthermalsci.2011.08.004.
  • S. V. Ekkad, Y. Huang, and J. C. Han, “Detailed heat transfer distributions in two-pass square channels with rib turbulators and bleed holes,” Int. J. Heat Mass Transfer, vol. 41, no. 23, pp. 3781–3791, 1998. DOI: 10.1016/S0017-9310(98)00099-4.
  • E. Y. Choi, Y. D. Choi, W. S. Lee, J. T. Chung, and J. S. Kwak, “Heat transfer augmentation using a rib–dimple compound cooling technique,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 435–441, 2013. DOI: 10.1016/j.applthermaleng.2012.09.041.
  • S. V. Prabhu and R. P. Vedula, “Pressure drop characteristics in a rotating smooth square channel with a sharp 180 bend,” Exp. Therm Fluid Sci., vol. 21, no. 4, pp. 198–205, 2000. DOI: 10.1016/S0894-1777(00)00003-0.
  • B. Sunden and G. Xie, “Gas turbine blade tip heat transfer and cooling: A literature survey,” Heat Transfer Eng., vol. 31, no. 7, pp. 527–554, 2010. DOI: 10.1080/01457630903425320.
  • T. S. Dhanasekaran and T. Wang, “Numerical model validation and prediction of mist/steam cooling in a 180-degree bend tube,” Int. J. Heat Mass Transfer, vol. 55, no. 13–14, pp. 3818–3828, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.02.042.
  • T. S. Dhanasekaran and T. Wang, “Computational analysis of mist/air cooling in a two-pass rectangular rotating channel with 45-deg angled rib turbulators,” Int. J. Heat Mass Transfer, vol. 61, pp. 554–564, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.02.006.
  • S. M. Baek et al., “A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs,” Appl. Therm. Eng., vol. 31, no. 8–9, pp. 1427–1434, 2011. DOI: 10.1016/j.applthermaleng.2011.01.009.
  • M. Matian, A. Marquis, and N. Brandon, “Model based design and test of cooling plates for an air-cooled polymer electrolyte fuel cell stack,” Int. J. Hydrogen Energy, vol. 36, no. 10, pp. 6051–6066, 2011. DOI: 10.1016/j.ijhydene.2011.01.026.
  • H. Kahraman and M. F. Orhan, “Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling,” Energ. Convers. Manage., vol. 133, pp. 363–384, 2017. DOI: 10.1016/j.enconman.2016.10.053.
  • S. Ravishankar and K. Arul Prakash, “Numerical studies on thermal performance of novel cooling plate designs in polymer electrolyte membrane fuel cell stacks,” Appl. Therm. Eng., vol. 66, no. 1–2, pp. 239–251, 2014. DOI: 10.1016/j.applthermaleng.2014.01.068.
  • T. M. Liou, Y. Y. Tzeng, and C. C. Chen, “Fluid flow in a 180 deg sharp turning duct with different divider thicknesses,” J. Turbomach., vol. 121, no. 3, pp. 569–576, 1999. DOI: 10.1115/1.2841354.
  • T. M. Jeng, S. C. Tzeng, and R. Xu, “Experimental study of heat transfer characteristics in a 180-deg round turned channel with discrete aluminium-foam blocks,” Int. J. Heat Mass Transfer, vol. 71, pp. 133–141, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.11.035.
  • Z. Shen, Y. Xie, and D. Zhang, “Numerical predictions on fluid flow and heat transfer in U-shaped channel with the combination of ribs, dimples and protrusions under rotational effects,” Int. J. Heat Mass Transfer, vol. 80, pp. 494–512, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.057.
  • A. N. Brooks and T. J. R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations,” Comput. Method Appl. M, vol. 32, no. 1–3, pp. 199–259, 1982. 7825(82)90071-8. DOI: 10.1016/0045-.
  • A. J. Chorin, “A numerical method for solving incompressible viscous flow problems,” J. Comput. Phys., vol. 135, no. 2, pp. 118–125, 1997. DOI: 10.1006/jcph.1997.5716.
  • K. A. Prakash, G. Biswasand, and B. V. Rathish Kumar, “Numerical prediction of fluid flow and heat transfer in the target system of an axisymmetric accelerator-driven subcritical system,” J. Heat Trans.-T. ASME, vol. 129, no. 4, pp. 582–588, 2006. DOI: 10.1115/1.2709972.
  • K. Arul Prakash, G. Biswas, and B. V. Rathish Kumar, “Thermal hydraulics of the spallation target module of an accelerator driven sub-critical system: A numerical study,” Int. J. Heat Mass Transfer, vol. 49, no. 23–24, pp. 4633–4652, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.04.018.
  • S. R. Mahapatro and K. Arul Prakash, “Three-dimensional study of multiple-jet cross flow cooling system with single array of heat sources,” Heat Transfer Eng., vol. 39, no. 3, pp. 252–267, 2018. DOI: 10.1080/01457632.2017.1295740.
  • P. R. Nakkina, K. Arul Prakash, and G. Saravana Kumar, “Numerical studies on fluid flow characteristics through different configurations of spiral casing,” Eng. Appl. Comp. Fluid, vol. 10, no. 1, pp. 296–310, 2016. DOI: 10.1080/19942060.2016.1149103.
  • S. Soumya and K. Arul Prakash, “Effect of splitter plate on passive control and drag reduction for fluid flow past an elliptic cylinder,” Ocean Eng., vol. 141, pp. 351–374, 2017. DOI: 10.1016/j.oceaneng.2017.06.034.
  • S. S. Vadri, K. Arul Prakash, and A. Pattamatta, “Numerical investigation of forced convective heat transfer characteristics of a porous channel filled with-water nanofluid in the presence of heaters and coolers,” Heat Transfer Eng., vol. 39, no. 11, pp. 985–997, 2018. DOI: 10.1080/01457632.2017.1357786.
  • E. Erturk, “Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions,” Comput. Fluids, vol. 37, no. 6, pp. 633–655, 2008. DOI: 10.1016/j.compfluid.2007.09.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.