202
Views
3
CrossRef citations to date
0
Altmetric
Articles

Numerical Study of Perturbators Influence on Heat Transfer and Investigation of Collector Performance for a Micro-Combined Heat and Power System Application

, , , , , & show all

References

  • M. Hinnells, “Combined heat and power in industry and buildings,” Energy Policy, vol. 36, no. 12, pp. 4522–4526, Dec. 2008. DOI: 10.1016/j.enpol.2008.09.018.
  • M. A. Rosen, M. N. Le, and I. Dincer, “Efficiency analysis of a cogeneration and district energy system,” Appl. Therm. Eng., vol. 25, no. 1, pp. 147–159, Jan. 2005. DOI: 10.1016/j.applthermaleng.2004.05.008.
  • M. Delanaye et al., “Development of a recuperated flameless combustor for an inverted Bryton cycle microturbine used in residential micro-CHP,” presented at the ASME. Turbo Expo: Power for Land, Sea, and Air, vol. 4B: Charlotte, NC, USA, June 26–30, 2017.
  • C. F. McDonald, “Low-cost compact primary surface recuperator concept for microturbines,” Appl. Therm. Eng., vol. 20, no. 5, pp. 471–497, Apr. 2000. DOI: 10.1016/S1359-4311(99)00033-2.
  • R. K. Shah, “Advances in science and technology of compact heat exchangers,” Heat Transf. Eng., vol. 27, no. 5, pp. 3–22, Dec. 2006. DOI: 10.1080/01457630600559462.
  • S. S. Mehendale, A. M. Jacobi, and R. K. Shah, “Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design,” ASME Appl. Mech. Rev., vol. 53, no. 7, pp. 175–193, 2000. DOI: 10.1115/1.3097347.
  • S. Kandlikar, J. Shailesh, and T. Shurong, “Effect of surface roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubes,” Heat Transf. Eng., vol. 24, no. 3, pp. 4–16, 2003. DOI: 10.1080/01457630304069.
  • B. Sunden, Advanced Computational Methods in Heat Transfer IX, 2nd ed. Southampton, UK: WIT Press, 2006.
  • H. Nakamura, T. Igarashi, and T. Tsutsui, “Local heat transfer around a wall-mounted cube in the turbulent boundary layer,” Int. J. Heat Mass Transf., vol. 44, no. 18, pp. 3385–3395, Sep. 2001. DOI: 10.1016/S0017-9310(01)00009-6.
  • K. Hanjalic, E. R. Meinders, and R. J. Martinuzzi, “Experimental study of the local convection heat transfer from a wall-mounted cube in turbulent channel flow,” J. Heat Transf., vol. 3, no. 17, pp. 564–573, 1999. DOI: 10.1115/1.2826017.
  • M. Fiebig, “Vortex generators for compact heat transfer exchangers,” J. Enhanc. Heat Transf., vol. 2, no. 1-2, pp. 43–61, 1995. DOI: 10.1615/JEnhHeatTransf.v2.i1-2.60.
  • D. P. DeWitt, and F. P. Incropera, Introduction to Heat Transfer. Hoboken, NJ, USA: John Wiley and Sons, 1996.
  • M. Fiebig, “Vortices, generators and heat transfer,” Chem. Eng. Res. Des., vol. 2, no. 263, pp. 108–123, Feb. 1998. DOI: 10.1205/026387698524686.
  • T. R. Johnson, and P. N. Joubert, “The influence of vortex generators on the drag and heat transfer from a circular cylinder normal to an airstream,” J. Heat Transf., vol. 91, no. 1, pp. 91–99, Aug. 1969. DOI: 10.1115/1.3580126.
  • L. Luo, C. Pistoresi, and Y. Fan, “Numerical study on the improvement of flow distribution uniformity among parallel mini-channels,” Chem. Eng. Process. Process Intensif., vol. 95, no. 13, pp. 63–71, Jul. 2015. DOI: 10.1016/j.cep.2015.05.014.
  • A. Siddique, B. J. Medhi, A. Agrawal, A. Singh, and S. K. Saha, “Design of a collector shape for uniform flow distribution in microchannels,” J. Micromech. Microeng., vol. 27, no. 13, pp. 26–50, 2017. DOI: 10.1088/1361-6439/aa73eb.
  • Y. Yang, I. Gerken, J. J. Brandner, and G. L. Morini, “Design and experimental investigation of a gas-to-gas counter-flow micro heat exchanger,” Exp. Heat Transf., vol. 27, no. 4, pp. 340–359, Sep. 2014. DOI: 10.1080/08916152.2013.849179.
  • Y. Yang, “Experimental and numerical analysis of gas forced convection through microtubes and micro heat exchangers”, Ph.D. dissertation, Dept. Ingegneria Energetica, Nucleare e del Controllo Ambientale, UNIBO, Italy, 2013.
  • S. Salehi, H. Afshin, and B. Farhanieh, “Numerical investigation of the inlet baffle, header geometry, and triangular fins effects on plate-fin heat exchangers performance,” Heat Transf. Eng., vol. 36, no. 16, pp. 1397–1408, Sep. 2015. DOI: 10.1080/01457632.2015.1003720.
  • H. Yang, J. Wen, X. Gu, K. Li, S. Wang, and Y. Li, “Improvements on flow distribution and heat transfer performance of plate-fin heat exchangers by Qusai-S type header configuration,” Heat Transf. Eng., vol. 38, no. 18, pp. 1547–1560, Dec. 2017. DOI: 10.1080/01457632.2016.1262719.
  • V. M. Siva, A. Pattamatta, and S. K. Das, “Effect of flow maldistribution on the thermal performance of parallel microchannel cooling systems,” Int. J. Heat Mass Transf., vol. 73, pp. 424–430, Jun. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.02.017.
  • P. Chu, L. Yong-Gang, Y. He, and R. Li, “Design and optimization of heat exchangers with helical baffles,” Chem. Eng. Sci., vol. 63, no. 17, pp. 4386–4395, 2008. DOI: 10.1016/j.ces.2008.05.044.
  • Y. Li, J. Wen, A. Zhou, K. Zhang, and J. Wang, “PIV experimental investigation of entrance configuration on flow maldistribution in plate-fin heat exchanger,” Cryogenics, vol. 46, no. 1, pp. 37–48, 2006. DOI: 10.1016/j.cryogenics.2005.10.010.
  • V. V. Dharaiya, and S. G. Kandlikar, “Evaluation of a tapered header configuration to reduce flow maldistribution in minichannels and microchannels”, presented at the Proceedings of the ASME 7th International Conference on Nanochannels, Microchannels and Mini-channels, Pohang, South Korea, Jun. 22–24, 2009. DOI: 10.1115/ICNMM2009-82288.
  • J. K. Tong, E. M. Sparrow, and J. P. Abraham, “Attainment of flowrate uniformity in the channels that link a distribution manifold to a collection manifold,” ASME J. Fluids Eng., vol. 129, no. 9, pp. 1186–1192, 2007. DOI: 10.1115/1.2754319.
  • M. Hoffmann, J. Walmsley, and V. Neale, “Flow profiles on the fin side of a plate fin-and-tube heat exchanger experiencing gross flow maldistribution”, presented at the Proceedings of 7th world conference, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Krakow, Poland, Jun. 28–Jul. 3, 2009.
  • C. B. Sobhan, and S. V. Garimella, “A comparative analysis of studies on heat transfer and fluid flow in microchannels,” Microscale Thermophys. Eng., vol. 5, no. 4, pp. 293–311, 2001. DOI: 10.1080/10893950152646759.
  • A. Barbaros Cetin, M. Haluk, and K. G. Guler, “Computational modelling of vehicle radiators using porous medium approach,” Des. Exp. Simul., vol. 2, no. 21, pp. 243–262, 2017. DOI: 10.5772/6628.
  • L. Z. Zhang, “Flow maldistribution and thermal performance deterioration in a cross-flow air to air heat exchanger with plate-fin cores,” Int. J. Heat Mass Transf., vol. 52, no. 19-20, pp. 4500–4509, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.03.049.
  • W. Wang, J. Guo, S. Zhang, J. Yang, X. Ding, and X. Zhan, “Numerical study on hydrodynamic characteristics of plate-fin heat exchanger using porous media approach,” Comput. Chem. Eng., vol. 61, pp. 30–37, Feb. 2014. DOI: 10.1016/j.compchemeng.2013.10.010.
  • J. Joseph et al., “Numerical and experimental investigation of a wire-net compact heat exchanger performance for high-temperature applications,” Appl. Therm. Eng., vol. 154, pp. 208–216, May 2019. DOI: 10.1016/j.applthermaleng.2019.03.046.
  • J. Joseph, M. Delanaye, R. Nacereddine, J. J. Brandner, and J. G. Korvink, “Advanced numerical methodology to analyze high-temperature wire-net compact heat exchangers for a micro-combined heat and power system application,” Heat Transf. Eng., vol. 41, no. 11. DOI: 10.1080/01457632.2019.1589984.
  • N. Tsuzuki, M. Utamura, and T. L. Ngo, “Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins,” Appl. Therm. Eng., vol. 29, no. 16, pp. 3299–3308, Nov. 2009. DOI: 10.1016/j.applthermaleng.2009.05.004.
  • D. Rehman, J. Joseph, G. L. Morini, M. Delanaye, and J. Brandner, “A porous media model for a double-layered gas-to-gas micro heat exchanger operating in laminar flow regime,” presented at the UIT Heat Transfer Conference, Padova, Italy, Jun. 24–26, 2019.
  • K. Gersten, HermannSchlichting, Boundary-Layer Theory, 9th ed. Berlin, Germany: Springer-Verlag, 2017.
  • Bodenschatz Group, “Grid turbulence, turbulence generation and manipulation”, Germany, [Online]. Available: http://www.lfpn.ds.mpg.de/turbulence/generation.html. Accessed: May 21, 2019.
  • G. Y. Lai, High-Temperature Corrosion and Materials Applications, 2nd ed. Cambridge, MA: Woodhead Publishing, 2017.
  • S. Pope, Turbulent Flows. Cambridge, UK: Cambridge University Press, 2000.
  • E. R. Meinders, T. H. Van Der Meer, and K. Hanjalic, “Local convective heat transfer from an array of wall-mounted cubes,” Int. J. Heat Mass Transf., vol. 41, no. 2, pp. 335–346, Jan. 1998. DOI: 10.1016/S0017-9310(97)00148-8.
  • R. Manceau, Industrial Codes for CFD, International Masters in Turbulence, 1st ed. Pau, France: Applied Mathematics Department, Inria-Cagire Group. CNRS–University of Pau, 2017 [Online]. Available: http://remimanceau.gforge.inria.fr/Publis/PDF/IndustrialCodesForCFD.pdf. Accessed: May. 23, 2019.
  • F. Afroz, and M. A. R. Sharif, “Numerical analysis of the flow separation and adverse pressure gradient in laminar boundary layer over a flat plate due to a rotating cylinder in the vicinity,” Fluid Dyn. Res., vol. 50, no. 2, pp. 1–46, Jan. 2018. DOI: 10.1088/1873-7005/aa9629.
  • J. Moore, J. G. Moore, S. P. Heckel, and R. Ballesteros, “Reynolds stresses and dissipation mechanisms in a turbine tip leakage vortex,” presented at the ASME Turbo Expo: Power for Land, Sea, and Air, vol. 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation, The Hague, Netherlands, Jun. 13–16, 1994. DOI: 10.1115/94-GT-267.
  • J. Wallace, H. Eckelmann, and R. Brodkey, “The wall region in turbulent shear flow,” J. Fluid Mech., vol. 54, no. 1, pp. 39–48, 1972. DOI: 10.1017/S0022112072000515.
  • J. Teng, J. Chu, M. Liu, C. Wang, and R. Greif, “Investigation of the flow mal-distribution in microchannels,” presented at the ASME 2003 International Mechanical Engineering Congress and Exposition, Microelectromechanical System, Washington, DC, USA, Nov. 15–21, 2003. DOI: 10.1115/IMECE2003-41323.
  • C. Anbumeenakshi, and M. R. Thansekhar, “Experimental investigation of header shape and inlet configuration on flow maldistribution in microchannel,” Exp. Therm. Fluid Sci., vol. 75, pp. 156–161, Jul. 2016. DOI: 10.1016/j.expthermflusci.2016.02.004.
  • D. Rehman, G. L. Morini, and C. Hong, “A comparison of data reduction methods for average friction factor calculation of adiabatic gas flows in microchannels,” Micromachines, vol. 171, no. 3, pp. 1–19, 2019. DOI: 10.3390/mi10030171.
  • B. R. Munson, D. F. Young, T. H. Okiishi, and W. W. Huebsch, Fundamentals of Fluid Mechanics, 6th ed. Hoboken, NJ, USA: John Willey and Sons Inc., 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.