425
Views
3
CrossRef citations to date
0
Altmetric
Articles

Experimental Investigation of Condensation and Freezing Phenomenon on Hydrophilic and Hydrophobic Titanium Nanopillared Glass Surfaces

, , , &

References

  • J. Rose, “Dropwise condensation theory and experiment: a review,” P I Mech. Eng. A J. Pow., vol. 216, no. 2, pp. 115–128, Jan. 2002. DOI: 10.1243/09576500260049034.
  • J. E. Castillo, J. A. Weibel, and S. V. Garimella, “The effect of relative humidity on dropwise condensation dynamics,” Int. J. Heat Mass Transfer, vol. 80, pp. 759–766, Jan. 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.080.
  • K. Yanagisawa, M. Sakai, T. Isobe, S. Matsushita, and A. Nakajima, “Investigation of droplet jumping on superhydrophobic coatings during dew condensation by the observation from two directions,” Appl. Surf. Sci., vol. 315, pp. 212–221, Oct. 2014. DOI: 10.1016/j.apsusc.2014.07.120.
  • R. Narhe and D. Beysens, “Growth dynamics of water drops on a square-pattern rough hydrophobic surface,” Langmuir, vol. 23, no. 12, pp. 6486–6489, May 2007. DOI: 10.1021/la062021y.
  • A. Leipertz and A. P. Fröba, “Improvement of condensation heat transfer by surface modifications,” Heat Transfer Eng., vol. 29, no. 4, pp. 343–356, July 2008. DOI: 10.1080/01457630701821563.
  • X.-H. Ma, T.-Y. Song, Z. Lan, and T. Bai, “Transient characteristics of initial droplet size distribution and effect of pressure on evolution of transient condensation on low thermal conductivity surface,” Int. J. Therm. Sci., vol. 49, no. 9, pp. 1517–1526, Sep. 2010. DOI: 10.1016/j.ijthermalsci.2010.05.011.
  • R. Wen, Z. Lan, B. Peng, W. Xu, and X. Ma, “Droplet dynamics and heat transfer for dropwise condensation at lower and ultra-lower pressure,” Appl. Therm. Eng., vol. 88, pp. 265–273, Sep. 2015. DOI: 10.1016/j.applthermaleng.2014.09.069.
  • S. Chavan et al., “Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces,” Langmuir, vol. 32, no. 31, pp. 7774–7787, Jul. 2016. DOI: 10.1021/acs.langmuir.6b01903.
  • H. Hu, G. Tang, and D. Niu, “Experimental investigation of condensation heat transfer on hybrid wettability finned tube with large amount of noncondensable gas,” Int. J. Heat Mass Transfer, vol. 85, pp. 513–523, Jun. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.006.
  • F. M. Mancio Reis, P. Lavieille, and M. Miscevic, “Dropwise condensation enhancement using a wettability gradient,” Heat Transfer Eng., vol. 38, no. 3, pp. 377–385, 2017. DOI: 10.1080/01457632.2016.1189277.
  • N. Miljkovic, R. Enright, and E. N. Wang, “Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces,” ACS Nano, vol. 6, no. 2, pp. 1776–1785, Jan. 2012. DOI: 10.1021/nn205052a.
  • M. R. Haque, C. Qu, E. C. Kinzel, and A. R. Betz, “Condensation dynamics and droplet size distribution,” presented at the ASME 2017 15th International Conference on Nanochannels, Microchannels, and Minichannels, Cambridge, Massachusetts, USA, Aug. 27–30, 2017, pp. V001T09A002. DOI: 10.1115/ICNMM2017-5562.
  • R. Enright, N. Miljkovic, N. Dou, Y. Nam, and E. N. Wang, “Condensation on superhydrophobic copper oxide nanostructures,” J. Heat Transfer, vol. 135, no. 9, pp. 091304, Jul. 2013. DOI: 10.1115/1.4024424.
  • C.-H. Chen Q. Cai, C. Tsai, and C.-L. Chen, “Dropwise condensation on superhydrophobic surfaces with two-tier roughness,” Appl. Phys. Lett., vol. 90, no. 17, pp. 173108, Apr. 2007. DOI: 10.1063/1.2731434.
  • T.-J. Ko et al., “Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures,” Carbon, vol. 50, no. 14, pp. 5085–5092, Nov. 2012. DOI: 10.1016/j.carbon.2012.06.048.
  • L. Yin, Y. Wang, J. Ding, Q. Wang, and Q. Chen, “Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings,” Appl. Surf. Sci., vol. 258, no. 8, pp. 4063–4068, Feb. 2012. DOI: 10.1016/j.apsusc.2011.12.100.
  • J. Feng, Y. Pang, Z. Qin, R. Ma, and S. Yao, “Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others,” ACS Appl. Mater. Inter., vol. 4, no. 12, pp. 6618–6625, Nov. 2012. DOI: 10.1021/am301767k.
  • E. Ölçeroğlu, C.-Y. Hsieh, M. M. Rahman, K. K. S. Lau, and M. McCarthy, “Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces,” Langmuir, vol. 30, no. 25, pp. 7556–7566, May 2014. DOI: 10.1021/la501063j.
  • L. Mishchenko, M. Khan, J. Aizenberg, and B. D. Hatton, “Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches,” Adv. Funct. Mater., vol. 23, no. 36, pp. 4577–4584, Jul. 2013. DOI: 10.1002/adfm.201300418.
  • H. Kim and Y. Nam, “Condensation behaviors and resulting heat transfer performance of nano-engineered copper surfaces,” Int. J. Heat Mass Transfer, vol. 93, pp. 286–292, Feb. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.079.
  • B. S. Sikarwar, S. Khandekar, S. Agrawal, S. Kumar, and K. Muralidhar, “Dropwise condensation studies on multiple scales,” Heat Transfer Eng., vol. 33, no. 4–5, pp. 301–341, Nov. 2012. DOI: 10.1080/01457632.2012.611463.
  • C.-C. Wang, Y.-J. Chang, S.-J. Fan, and W.-J. Sheu, “Some observations of the frost formation in fin arrays,” Heat Transfer Eng., vol. 25, no. 8, pp. 35–47, Aug. 2004. DOI: 10.1080/01457630490520257.
  • M. A. Rahman and A. M. Jacobi, “Condensation, frost formation, and frost melt-water retention characteristics on microgrooved brass surfaces under natural convection,” Heat Transfer Eng., vol. 34, no. 14, pp. 1147–1155, May 2013. DOI: 10.1080/01457632.2013.776453.
  • K. W. Kim, S. C. Do, J. S. Ko, and J. H. Jeong, “Observation of water condensate on hydrophobic micro textured surfaces,” Heat Mass Transf., vol. 49, no. 7, pp. 955–962, Mar. 2013. DOI: 10.1007/s00231-013-1141-z.
  • D. Attinger, “Surface engineering for phase change heat transfer: a review,” MRS Energy Sustainability., vol. 1, pp. 1–40, Nov. 2014. DOI: 10.1557/mre.2014.9.
  • Y. Chen, P. Lu, C. Shen, and Q. Zhang, “Experimental study on frost formation on a cold surface in low atmospheric pressure,” Appl. Therm. Eng., vol. 90, pp. 86–93, Nov. 2015. DOI: 10.1016/j.applthermaleng.2015.06.098.
  • A. Jedlikowski, S. Anisimov, J. Danielewicz, M. Karpuk, and D. Pandelidis, “Frost formation and freeze protection with bypass for counter-flow recuperators,” Int. J. Heat Mass Transfer, vol. 108, no. Part-A, pp. 585–613, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.047.
  • A. Aili, Q. Ge, and T. Zhang, “How nanostructures affect water droplet nucleation on superhydrophobic surfaces,” Trans. Asme, J. Heat Transf., vol. 139, no. 11, pp. 112401, Jun. 2017. DOI: 10.1115/1.4036763.
  • Q. Zeng and S. Xu, “Thermodynamics and characteristics of heterogeneous nucleation on fractal surfaces,” J. Phys. Chem. C, vol. 119, no. 49, pp. 27426–27433, Nov. 2015. DOI: 10.1021/acs.jpcc.5b07709.
  • M. R. Haque, C. Qu, E. C. Kinzel, and A. R. Betz, “Droplet growth dynamics during atmospheric condensation on nanopillar surfaces,” Nanosc. Microsc. Therm., vol. 22, no. 4, pp. 270–295, Jul. 2018. DOI: 10.1080/15567265.2018.1495282.
  • J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vacuum Sci. Technol. A, vol. 13, no. 3, pp. 1553–1558, 1995. DOI: 10.1116/1.579726.
  • W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology, vol. 18, no. 48, pp. 485302, Oct. 2007. DOI: 10.1088/0957-4484/18/48/485302.
  • C. Qu and E. C. Kinzel, “Polycrystalline metasurface perfect absorbers fabricated using microsphere photolithography,” Opt. Lett., vol. 41, no. 15, pp. 3399–3402, Jul. 2016. DOI: 10.1364/OL.41.003399.
  • A. Bonakdar et al., “Deep-UV microsphere projection lithography,” Opt. Lett., vol. 40, no. 11, pp. 2537–2540, Jun. 2015. DOI: 10.1364/OL.40.002537.
  • O. Shavdina et al., “Large area fabrication of periodic TiO2 nanopillars using microsphere photolithography on a photopatternable sol–gel film,” Langmuir, vol. 31, no. 28, pp. 7877–7884, Jun. 2015. DOI: 10.1021/acs.langmuir.5b01191.
  • D. J. Preston, D. L. Mafra, N. Miljkovic, J. Kong, and E. N. Wang, “Scalable graphene coatings for enhanced condensation heat transfer,” Nano Lett., vol. 15, no. 5, pp. 2902–2909, Mar. 2015. DOI: 10.1021/nl504628s.
  • H. Kim et al., “Water harvesting from air with metal-organic frameworks powered by natural sunlight,” Science, vol. 356, no. 6336, pp. 430–434, Apr. 2017. DOI: 10.1021/nl504628s.
  • R. Bohm, M. R. Haque, C. Qu, E. C. Kinzel, and A. R. Betz, “Accelerated freezing due to droplet pinning on a nanopillared surface,” AIP Adv., vol. 8, no. 12, pp. 125228, Dec. 2018. DOI: 10.1063/1.5048933.
  • M. R. Haque and A. R. Betz, “Frost formation on aluminum and hydrophobic surfaces,” presented at the ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels, Dubrovnik, Croatia, Jun. 10–13, 2018, p. V001T04A001. DOI: 10.1115/ICNMM2018-7609.
  • J. Park et al., “Direct and accurate measurement of size dependent wetting behaviors for sessile water droplets,” Sci. Rep., vol. 5, no. 1, pp. 18150, Dec. 2015. DOI: 10.1038/srep46836.
  • D. Seo, S. Oh, S. Shin, and Y. Nam, “Dynamic heat transfer analysis of condensed droplets growing and coalescing on water repellent surfaces,” Int. J. Heat Mass Transfer, vol. 114, pp. 934–943, Nov. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.129.
  • A. S. Van Dyke, D. Collard, M. M. Derby, and A. R. Betz, “Droplet coalescence and freezing on hydrophilic, hydrophobic, and biphilic surfaces,” Appl. Phys. Lett., vol. 107, no. 14, pp. 141602, Oct. 2015. DOI: 10.1063/1.4932050.
  • S. Nath, S. F. Ahmadi, and J. B. Boreyko, “A review of condensation frosting,” Nanosc. Microsc. Therm., vol. 21, no. 2, pp. 81–101, Jan. 2017. DOI: 10.1080/15567265.2016.1256007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.