257
Views
2
CrossRef citations to date
0
Altmetric
Articles

Modeling Of Heat Transfer Coefficients During Condensation At Low Mass Fluxes Inside Horizontal And Inclined Smooth Tubes

, &

References

  • J. S. Shin, and M. H. Kim, “An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels,” Heat Transf. Eng., vol. 26, no. 3, pp. 36–44, Sep. 2005. DOI: 10.1080/01457630590907185.
  • M. Christians, M. Habert, and J. R. Thome, “Film condensation of R-134a and R-236fa, part 2: Experimental results and predictive correlation for bundle condensation on enhanced tubes,” Heat Transf. Eng., vol. 31, no. 10, pp. 809–820, Jul. 2010.
  • J. Palen, G. Breber, and J. Taborek, “Prediction of flow regimes in horizontal tube-side condensation,” Heat Transf. Eng., vol. 1, no. 2, pp. 47–57, Apr. 1979.
  • T. Ji, L. Liebenberg, and J. P. Meyer, “Heat transfer enhancement during condensation in smooth tubes with helical wire inserts,” Heat Transf. Eng., vol. 30, no. 5, pp. 337–352, Jul. 2009. DOI: 10.1080/01457630802414466.
  • J.-P. Bukasa, L. Liebenberg, and J. P. Meyer, “Influence of spiral angle on heat transfer during condensation inside spiralled micro-fin tubes,” Heat Transf. Eng., vol. 26, no. 7, pp. 11–21, 2005. Aug DOI: 10.1080/01457630590959278.
  • J.-P. M. Bukasa, L. Liebenberg, and J. P. Meyer, “Heat transfer performance during condensation inside spiralled micro-fin tubes,” J. Heat Transf., vol. 126, no. 3, pp. 321–321, Jul. 2004. DO1:
  • S. Garimella, “Condensation flow mechanisms in microchannels: Basis for pressure drop and heat transfer models,” Heat Transf. Eng., vol. 25, no. 3, pp. 104–116, Jul. 2004.
  • G. A. Longo, S. Mancin, G. Righetti, and C. Zilio, “Saturated vapour condensation of R410A inside a 4 mm ID horizontal smooth tube: Comparison with the low GWP substitute R32,” Int. J. Heat Mass Transf., vol. 125, pp. 702–709, Oct. 2018.
  • A. Cavallini et al., “Condensation in horizontal smooth tubes: A new heat transfer model for heat exchanger design,” Heat Transf. Eng., vol. 27, no. 8, pp. 31–38, Sep. 2006,
  • A. S. Dalkilic, and S. Wongwises, “Experimental study on the modeling of condensation heat transfer coefficients in high mass flux region of refrigerant HFC-134a inside the vertical smooth tube in annular flow regime,” Heat Transf. Eng., vol. 32, no. 1, pp. 33–44, Nov. 2011. DOI: 10.1080/01457631003732839.
  • L. P.-W, M. Chen, and W.-Q. Tao, “Theoretical analysis and experimental investigation on local heat transfer characteristics of HFC-134a forced-convection condensation inside smooth horizontal tubes,” Heat Transfer Eng., vol. 21, no. 6, pp. 34–43, Oct. 2010. DOI: 10.1080/01457630050194799.
  • M. Valinčius, M. Šeporaitis, E. Ušpuras, and A. Kaliatka, “Experimental investigation and RELAP5 modeling of two-phase flow in horizontal rectangular channel,” Heat Transf. Eng., vol. 32, no. 11-12, pp. 1026–1030, Jun. 2011. DOI: 10.1080/01457632.2011.556490.
  • D. R. E. Ewim, J. P. Meyer, and S. M. A. Noori Rahim Abadi, “Condensation heat transfer coefficients in an inclined smooth tube at low mass fluxes,” Int. J. Heat Mass Transf., vol. 123, pp. 455–467, 2018. Aug. DOI: 10.1016/j.ijheatmasstransfer.2018.02.091.
  • J. P. Meyer, J. Dirker, and A. O. Adelaja, “Condensation heat transfer in smooth inclined tubes for R134a at different saturation temperatures,” Int. J. Heat Mass Transf., vol. 70, pp. 515–525, Mar. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.11.038.
  • S. Lips, and J. P. Meyer, “Experimental study of convective condensation in an inclined smooth tube. Part I: Inclination effect on flow pattern and heat transfer coefficient,” Int. J. Heat Mass Transf., vol. 55, no. 1–3, pp. 395–404, Jan. 2012.
  • A. Cavallini, S. Bortolin, D. Del Col, M. Matkovic, and L. Rossetto, “Condensation heat transfer and pressure losses of high- and low-pressure refrigerants flowing in a single circular minichannel,” Heat Transf. Eng, vol. 32, no. 2, pp. 90–98, Oct. 2011.
  • D. R. E. Ewim, R. Kombo, and J. P. Meyer, “Flow pattern and experimental investigation of heat transfer coefficients during the condensation of R134a at low mass fluxes in a smooth horizontal tube,” presented at the 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT), Costa del Sol, Malaga, Spain, Jul. 11-13, 2016.
  • J. P. Meyer, and D. R. E. Ewim, “Heat transfer coefficients during the condensation of low mass fluxes in smooth horizontal tubes,” Int. J. Multiph. Flow, vol. 99, pp. 485–499, Feb. 2018. DOI: 10.1016/j.ijmultiphaseflow.2017.11.015.
  • R. Suliman, L. Liebenberg, and J. P. Meyer, “Improved flow pattern map for accurate prediction of the heat transfer coefficients during condensation of R-134a in smooth horizontal tubes and within the low-mass flux range,” Int. J. Heat Mass Transf., vol. 52, no. 25–26, pp. 5701–5711, Dec. 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.08.017.
  • R. Suliman, M. Kyembe, and J. P. Meyer, “Experimental investigation and validation of heat transfer coefficients during condensation of R-134a at low mass fluxes,” presented at the 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT), Antalya, Turkey, Jul. 19–21, 2010.
  • H.-S. Lee, and C.-H. Son, “Condensation heat transfer and pressure drop characteristics of R-290, R-600a, R-134a and R-22 in horizontal tubes,” Heat Mass Transf., vol. 46, no. 5, pp. 571–584, 2010. DOI: 10.1007/s00231-010-0603-9.
  • C. Aprea, A. Greco, and G. P. Vanoli, “Condensation heat transfer coefficients for R22 and R407C in gravity driven flow regime within a smooth horizontal tube,” Int. J. Refrig., vol. 26, no. 4, pp. 393–401, Jun. 2003. DOI: 10.1016/S0140-7007(02)00151-2.
  • S. M. A. Noori Rahim Abadi, J. P. Meyer, and J. Dirker, “Effect of inclination angle on the condensation of R134a inside an inclined smooth tube,” Chem. Eng. Res. Des., vol. 132, pp. 346–357, Apr. 2018. DOI: 10.1016/j.cherd.2018.01.044.
  • S. M. A. Noori Rahim Abadi, M. Mehrabi, and J. P. Meyer, “Numerical study of steam condensation inside a long, inclined, smooth tube at different saturation temperatures,” Int. J. Heat Mass Transf., vol. 126, pp. 15–25, Nov. 2018.
  • R. Romero-Méndez, P. Lara-Vázquez, F. Oviedo-Tolentino, H. M. Durán-García, F. G. Pérez-Gutiérrez, and A. Pacheco-Vega, “Use of artificial neural networks for prediction of the convective heat transfer coefficient in evaporative mini-tubes,” Ing. Investig. Tecnol., vol. 17, no. 1, pp. 23–34, Jan.–Mar. 2016.
  • S. Azizi, E. Ahmadloo, and M. M. Awad, “Prediction of void fraction for gas-liquid flow in horizontal, upward and downward inclined pipes using artificial neural network,” Int. J. Multiph. Flow, vol. 87, pp. 35–44, Dec. 2016.
  • S. Azizi, and E. Ahmadloo, “Prediction of heat transfer coefficient during condensation of R134a in inclined tubes using artificial neural network,” Appl. Therm. Eng., vol. 106, pp. 203–210, Aug. 2016. DOI: 10.1016/j.applthermaleng.2016.05.189.
  • M. Boostani, H. Karimi, and S. Azizi, “Heat transfer to oil-water flow in horizontal and inclined pipes: Experimental investigation and ANN modeling,” Int. J. Therm. Sci, vol. 111, pp. 340–350, Jan. 2017. DOI: 10.1016/j.ijthermalsci.2016.09.005.
  • G. Scalabrin, M. Condosta, and P. Mari, “Mixtures flow boiling: Modeling heat transfer through artificial neural networks,” Int. J. Therm. Sci., vol. 45, no. 7, pp. 664–680, Jul. 2006. DOI: 10.1016/j.ijthermalsci.2005.09.011.
  • M. A. Hamdan, E. A. Abdelhafez, A. M. Hamdan, and R. A. Haj Khalil, “Heat transfer analysis of a flat-plate solar air collector by using an artificial neural network,” J. Infr. Syst., vol. 22, no. 4, pp. A4014004-1–A4014004-7, Dec. 2016. DOI: 10.1061/(asce)is.1943-555x.0000213.
  • M. Balcilar, A. S. Dalkilic, O. Agra, S. O. Atayilmaz, and S. Wongwises, “A correlation development for predicting the pressure drop of various refrigerants during condensation and evaporation in horizontal smooth and micro-fin tubes,” Int. Commun. Heat Mass Transf., vol. 39, no. 7, pp. 937–944, Aug.2012.
  • Q. Wang, G. Xie, M. Zeng, and L. Luo, “Prediction of heat transfer rates for shell-and-tube heat exchangers by artificial neural networks approach,” J. Therm. Sci., vol. 15, no. 3, pp. 257–262, Sep. 2006. DOI: 10.1007/s11630-006-0257-6.
  • H. Salehi, S. Zeinali Heris, M. K. Salooki, and S. H. Noei, “Designing a neural network for closed thermosyphon with nanofluid using a genetic algorithm,” Braz. J. Chem. Eng., vol. 28, no. 1, pp. 157–168, Jan./Mar. 2011.
  • L. V. Kamble, D. R. Pangavhane, and T. P. Singh, “Artificial neural network based prediction of heat transfer from horizontal tube bundles immersed in gas-solid fluidized bed of large particles,” J. Heat Transf., vol. 137, no. 1, pp. 012901–012901-9, Jan. 2015. DOI: 10.1115/1.4028645.
  • T. N. Verma, P. Nashine, D. V. Singh, T. S. Singh, and D. Panwar, “ANN: Prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes,” Appl. Therm. Eng., vol. 120, pp. 219–227, Jun. 2017.
  • G. Díaz, M. Sen, K. T. Yang, and R. L. McClain, “Simulation of heat exchanger performance by artificial neural networks,” HVAC&R Res., vol. 5, no. 3, pp. 195–208, Feb. 2011. DOI: 10.1080/10789669.1999.10391233.
  • W. Yaïci, and E. Entchev, “Performance prediction of a solar thermal energy system using artificial neural networks,” Appl. Therm. Eng, vol. 73, no. 1, pp. 1348–1359, Dec. 2014. DOI: 10.1016/j.applthermaleng.2014.07.040.
  • C. Shen, L. Yang, X. Wang, Y. Jiang, and Y. Yao, “Predictive performance of a wastewater source heat pump using artificial neural networks,” Build. Serv. Eng. Res. Tech., vol. 36, no. 3, pp. 331–342, Aug. 2015. DOI: 10.1177/0143624414547966.
  • M. R. Jafari Nasr, A. H. Khalaj, and S. H. Mozaffari, “Modeling of heat transfer enhancement by wire coil inserts using artificial neural network analysis,” Appl. Therm. Eng., vol. 30, no. 2-3, pp. 143–151, Feb. 2010. DOI: 10.1016/j.applthermaleng.2009.07.014.
  • N. Zhao, and Z. Li, “Experiment and artificial neural network prediction of thermal conductivity and viscosity for alumina-water nanofluids,” Materials, vol. 10, no. 5, pp. 552, May 2017. DOI: 10.3390/ma10050552.
  • C. K. Tan, J. Ward, S. J. Wilcox, and R. Payne, “Artificial neural network modelling of the thermal performance of a compact heat exchanger,” Appl. Therm. Eng., vol. 29, no. 17-18, pp. 3609–3617, Dec. 2009. DOI: 10.1016/j.applthermaleng.2009.06.017.
  • M. Mohanraj, S. Jayaraj, and C. Muraleedharan, “Applications of artificial neural networks for thermal analysis of heat exchangers – A review,” Int. J. Therm. Sci., vol. 90, pp. 150–172, Apr. 2015. DOI: 10.1016/j.ijthermalsci.2014.11.030.
  • M. Mohanraj, S. Jayaraj, and C. Muraleedharan, “Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems — A review,” Renew. Sust. Energy Reviews, vol. 16, no. 2, pp. 1340–1358, Feb. 2012.
  • K.-T. Yang, “Artificial neural networks (ANNs): A new paradigm for thermal science and engineering,” J. Heat Transf., vol. 130, no. 9, pp. 1–19, Sep. 2008. DOI: 10.1115/1.2944238.
  • J. Krzywanski, and W. Nowak, “Modeling of heat transfer coefficient in the furnace of CFB boilers by artificial neural network approach,” Int. J. Heat Mass Transf., vol. 55, no. 15-16, pp. 4246–4253, Jul. 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.066.
  • D. R. E. Ewim, and J. P. Meyer, “Experimental investigation of condensation heat transfer coefficients in an inclined smooth tube at low mass fluxes,” presented at the 16th International Heat Transfer Conference, IHTC-16, Beijing, China, Aug. 10–15, 2018. DOI: 10.1615/IHTC16.mpf.023113.
  • S. N. R. Abadi, M. Mehrabi, and J. P. Meyer, “Prediction and optimization of condensation heat transfer coefficients and pressure drops of R134a inside an inclined smooth tube,” Int. J. Heat Mass Transf., vol. 124, pp. 953–966, Sep. 2018.
  • A. O. Adelaja, J. Dirker, and J. P. Meyer, “Convective condensation heat transfer of R134a in tubes at different inclination angles,” Int. J. Green Energy, vol. 13, no. 8, pp. 812–821, Mar. 2016. DOI: 10.1080/15435075.2016.1161633.
  • A. O. Adelaja, J. Dirker, and J. P. Meyer, “Experimental study of the pressure drop during condensation in an inclined smooth tube at different saturation temperatures,” Int. J. Heat Mass Transf., vol. 105, pp. 237–251, Feb. 2017.
  • M. Balcilar, A. Dalkilic, and S. Wongwises, “Artificial neural network techniques for the determination of condensation heat transfer characteristics during downward annular flow of r134a inside a vertical smooth tube,” Int. Commun. Heat Mass Transf., vol. 38, no. 1, pp. 75–84, Jan. 2011. DOI: 10.1016/j.icheatmasstransfer.2010.10.009.
  • D. R. E. Ewim, and J. P. Meyer, “Pressure drop during condensation at low mass fluxes in smooth horizontal and inclined tubes,” Int. J. Heat Mass Transf., vol. 133, pp. 686–701, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.161.
  • S. Lips, and J. P. Meyer, “Effect of gravity forces on heat transfer and pressure drop during condensation of R134a,” Microgravity Sci. Technol., vol. 24, no. 3, pp. 157–164, Jun. 2012. DOI: 10.1007/s12217-011-9292-3.
  • A. O. Adelaja, D. R. E. Ewim, J. Dirker, and, and J. P. Meyer, “Experimental investigation on pressure drop and friction factor in tubes at different inclination angles during the condensation of R134a,” presented at the 15th International Heat Transfer Conference, IHTC-15, Kyoto, Japan, Aug. 1-15, 2014. DOI: 10.1615/IHTC15.cds.009363.
  • S. Lips, and J. P. Meyer, “Experimental study of convective condensation in an inclined smooth tube. Part II: Inclination effect on pressure drops and void fractions,” Int. J. Heat Mass Transf., vol. 55, no. 1-3, pp. 405–412, Jan. 2012.
  • S. P. Olivier, J. P. Meyer, M. De Paepe, and K. De Kerpel, “The influence of inclination angle on void fraction and heat transfer during condensation inside a smooth tube,” Int. J. Multiph. Flow, vol. 80, pp. 1–14, Apr. 2016. DOI: 10.1016/j.ijmultiphaseflow.2015.10.015.
  • S. Lips, and J. P. Meyer, “Stratified flow model for convective condensation in an inclined tube,” Int. J. Heat Fluid Flow, vol. 36, pp. 83–91, Aug. 2012.
  • E. W. Lemmon, M. L. Huber, and, and M. O. McLinden, National Institute of Standards and Technology (NIST) reference database 23: Reference fluid thermodynamic and transport properties (REFPROP), version 9.1, Gaithersburg, MD, USA: REFPROP, May 7, 2013.
  • R. Lipmann, “An introduction to computing with neural nets,” IEEE ASSP mag., vol. 4, no. 2, pp. 4–22, Apr. 1987. DOI: 10.1109/MASSP.1987.1165576.
  • R. Tong, “A control engineering review of fuzzy systems,” Automatica, vol. 13, no. 6, pp. 559–569, Nov. 1977. DOI: 10.1016/0005-1098(77)90077-2.
  • S. Pesteei, and M. Mehrabi, “Modeling of convection heat transfer of supercritical carbon dioxide in a vertical tube at low reynolds numbers using artificial neural network,” Int,” Commun. Heat Mass Transf., vol. 37, no. 7, pp. 901–906, Aug. 2010.
  • J.-S. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 23, no. 3, pp. 665–685, May/Jun. 1993. DOI: 10.1109/21.256541.
  • D. Hanbay, A. Baylar, and E. Ozpolat, “Predicting flow conditions over stepped chutes based on ANFIS,” Soft Comput., vol. 13, no. 7, pp. 701–707, May. 2009.
  • M. Mehrabi, S. M. Pesteei, and T. Pashaee G, “Modeling of heat transfer and fluid flow characteristics of helicoidal double-pipe heat exchangers using adaptive neuro-fuzzy inference system (ANFIS),” Int,” Commun. Heat Mass Transf., vol. 38, no. 4, pp. 525–532, Apr. 2011.
  • M. Mehrabi, M. Sharifpur, and J. P. Meyer, “Application of the FCM-based neuro-fuzzy inference system and genetic algorithm-polynomial neural network approaches to modelling the thermal conductivity of alumina-water nanofluids,” Int. Commun. Heat Mass Transf., vol. 39, no. 7, pp. 971–977, Aug. 2012.
  • M. Mehrabi, S. Rezazadeh, M. Sharifpur, and, and J. P. Meyer, “Modeling of proton exchange membrane fuel cell (PEMFC) performance by using genetic algorithm-polynomial neural network (GA-PNN) hybrid system, presented at ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology (FUELCELL 2012), San Diego, CA, USA, Jul. 23-26, 2012. DOI: 10.1115/fuelcell2012-91391.
  • M. Mehrabi, M. Sharifpur, and, and J. P. Meyer, “Adaptive neuro-fuzzy modeling of the thermal conductivity of alumina-water nanofluids,” presented at ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer (MNHMT2012), Atlanta, GA, USA, Mar. 3-6, 2012. DOI: 10.1115/mnhmt2012-75023.
  • M. Mehrabi, “Application of FCM-ANFIS approach to model heat transfer and pressure drop of titania-water nanofluids in the turbulent flow regime,” presented at the 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE 2018), Toulouse, France, Apr. 15-18, 2018. DOI: 10.1109/EuroSimE.2018.8369927.
  • M. Mehrabi, M. Sharifpur, and J. P. Meyer, “Modelling and multi-objective optimization of the convective heat transfer characteristics and pressure drop of low concentration tio2-water nanofluids in the turbulent flow regime,” Int. J. Heat Mass Transf., vol. 67, pp. 646–653, Dec. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.013.
  • S. L. Chiu, “Fuzzy model identification based on cluster estimation,” J. Intell. Fuzzy Syst., vol. 2, no. 3, pp. 267–278, Jun 1994. DOI: 10.3233/IFS-1994-2306.
  • M. Mehrabi, S. M. A. N. R. Abadi, and J. P. Meyer, “Heat transfer and fluid flow optimization of titanium dioxide-water nanofluids in a turbulent flow regime,” Heat Transf. Eng., vol. 41, pp. 36–49Nov. 2018. DOI: 10.1080/01457632.2018.1513623.
  • J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters,” J. Cybern, vol. 3, no. 3, pp. 32–57, Apr. 1973.
  • J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. New York, NY, USA: Springer, 1981. DOI: 10.1007/978-1-4757-0450-1.
  • J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy C-means clustering algorithm,” Comput. Geosci., vol. 10, no. 2-3, pp. 191–203, Jan. 1984. DOI: 10.1016/0098-3004(84)90020-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.