769
Views
15
CrossRef citations to date
0
Altmetric
Articles

Experimental Study on Small Scale Printed Circuit Heat Exchanger with Zigzag Channels

, , , &

References

  • Y. Lee and J. I. Lee, “Structural assessment of intermediate printed circuit heat exchanger for sodium-cooled fast reactor with supercritical CO2 cycle,” Ann. Nucl. Energy, vol. 73, pp. 84–95, Nov. 2014. DOI: 10.1016/j.anucene.2014.06.022.
  • V. Dostal, P. Hejzlar and M. J. Driscoll, “High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors,” Nucl. Technol., vol. 154, no. 3, pp. 265–282, Jun. 2006. DOI: 10.13182/NT154-265.
  • V. Dostal, M. J. Driscoll, P. Hejzlar and Y. Wang, “Supercritical CO2 cycle for fast gas-cooled reactors,” ASME Turbo Expo 2004: Power for Land, Sea, and Air, 2004. Proceedings of vol. 7, pp. 683–692, Jun. 2004. DOI: 10.1115/GT2004-54242.
  • K. Wang, Y. L. He and H. H. Zhu, “Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts,” Appl. Energy, vol. 195, pp. 819–836, Jun. 2017. DOI: 10.1016/j.apenergy.2017.03.099.
  • M. A. Reyes-Belmonte, A. Sebastian, M. Romero and J. Gonzalez-Aguilar, “Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant,” Energy, vol. 112, pp. 17–27, Oct. 2016. DOI: 10.1016/j.energy.2016.06.013.
  • A. Meshram, et al., “Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications,” Appl. Thermal Eng., vol. 109, pp. 861–870, Oct. 2016. DOI: 10.1016/j.applthermaleng.2016.05.033.
  • E. G. Feher, “The supercritical thermodynamic power cycle,” Energy Convers., vol. 8, no. 2, pp. 85–90, Sep. 1968. DOI: 10.1016/0013-7480(68)90105-8.
  • F. Xin, T. Ma, Y. T. Chen and Q. W. Wang, “Two-dimensional chemical etching process simulation for printed circuit heat exchanger channels based on cellular automata model,” Heat Transf. Eng., vol. 39, no. 7–8, pp. 617–629, Jul. 2018. DOI: 10.1080/01457632.2017.1325660.
  • X. H. Li, W. X. Chu, T. Ma and Q. W. Wang, “Molecular dynamics simulation on diffusion welding between Cu and Al under different pressures and roughnesses,” Proceedings of ASME 2016 Heat Transfer Summer Conference, Washington, DC, USA, Jul. 2016. vol. 2, pp. 10–14, DOI: 10.1115/HT2016-7380.
  • N. S. Berbish, M. Moawed, M. Ammar and R. I. Afifi, “Heat transfer and friction factor of turbulent flow through a horizontal semi-circular duct,” Heat Mass Transf., vol. 47, no. 4, pp. 377–384, Apr. 2011. DOI: 10.1007/s00231-010-0727-y.
  • J. W. Seo, Y. H. Kim, D. Kim, Y. D. Choi and K. J. Lee, “Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers,” Entropy, vol. 17, no. 5, pp. 3438–3457, May 2015. DOI: 10.3390/e17053438.
  • I. H. Kim and H. C. No, “Thermal-hydraulic physical models for a printed circuit heat exchanger covering He, He-CO2 mixture, and water fluids using experimental data and CFD,” Exp. Therm. Fluid Sci., vol. 48, pp. 213–221, Jul. 2013. DOI: 10.1016/j.expthermflusci.2013.03.003.
  • S. K. Mylavarapu, X. D. Sun, R. E. Glosup, R. N. Christensen and M. W. Patterson, “Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility,” Appl. Therm. Eng., vol. 65, no. 1-2, pp. 605–614, Apr. 2014. DOI: 10.1016/j.applthermaleng.2014.01.025.
  • S. K. Mylavarapu, et al., “Fabrication and design aspects of high-temperature compact diffusion bonded heat exchangers,” Nucl. Eng. Design, vol. 249, pp. 49–56, Aug. 2012. DOI: 10.1016/j.nucengdes.2011.08.043.
  • S. Mylavarapu, X. Sun, J. Figley, N. Needler and R. Christensen, “Investigation of high-temperature printed circuit heat exchangers for very high temperature reactors,” ASME,” J. Eng. Gas Turbines Power, vol. 131, no. 6, pp. 062905–062907, Jul. 2009. DOI: 10.1115/1.3098425.
  • M. H. Chen, et al., “Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger,” Appl. Therm. Eng., vol. 108, pp. 1409–1417, Sep. 2016. DOI: 10.1016/j.applthermaleng.2016.07.149.
  • M. H. Chen, et al., “Experimental and numerical study of a printed circuit heat exchanger,” Ann. Nucl. Energy, vol. 97, pp. 221–231, Nov. 2016. DOI: 10.1016/j.anucene.2016.07.010.
  • A. M. Kruizenga, “Heat transfer and pressure drop measurements in prototypic heat exchanges for the supercritical carbon dioxide Brayton power cycles,” Ph.D. dissertation, The University of Wisconsin − Madison, Wisconsin, United States, 2010.
  • A. M. Kruizenga, H. Z. Li, M. Anderson and M. Corradini, “Supercritical carbon dioxide heat transfer in horizontal semicircular channels,” ASME,” J. Heat Transf., vol. 134, no. 8, pp. 081802–081810, Aug. 2012. DOI: 10.1115/1.4006108.
  • T. Ishizuka, Y. Kato, Y. Muto, K. Nikitin and T. Ngo, “Thermal-hydraulic characteristics of a printed circuit heat exchanger in a supercritical CO2 loop,” Bull. Res. Lab. Nucl. React., vol. 30, pp. 109–116, 2006.
  • T. L. Ngo, Y. Kato, K. Nikitin and T. Ishizuka, “Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles,” Exp. Therm. Fluid Sci., vol. 32, no. 2, pp. 560–570, Nov. 2007. DOI: 10.1016/j.expthermflusci.2007.06.006.
  • T. L. Ngo, Y. Kato, K. Nikitin and N. Tsuzuki, “New printed circuit heat exchanger with S-shaped fins for hot water supplier,” Exp. Therm. Fluid Sci., vol. 30, no. 8, pp. 811–819, Aug. 2006. DOI: 10.1016/j.expthermflusci.2006.03.010.
  • S. J. Yoon, J. O’Brien, M. Chen, P. Sabharwall and X. D. Sun, “Development and validation of Nusselt number and friction factor correlations for laminar flow in semi-circular zigzag channel of printed circuit heat exchanger,” Appl. Therm. Eng., vol. 123, pp. 1327–1344, Aug. 2017. DOI: 10.1016/j.applthermaleng.2017.05.135.
  • I. H. Kim and H. C. No, “Physical model development and optimal design of PCHE for intermediate heat exchangers in HTGRs,” Nucl. Eng. Design, vol. 243, pp. 243–250, Feb. 2012. DOI: 10.1016/j.nucengdes.2011.11.020.
  • S. M. Lee and K. Y. Kim, “Optimization of printed circuit heat exchanger using exergy analysis,” ASME,” J. Heat Transf., vol. 137, no. 6, pp. 064501–064505, Jun. 2015. DOI: 10.1115/1.4029849.
  • S. M. Lee and K. Y. Kim, “Multi-objective optimization of arc-shaped ribs in the channels of a printed circuit heat exchanger,” Int. J. Therm. Sci., vol. 94, pp. 1–8, Aug. 2015. DOI: 10.1016/j.ijthermalsci.2015.02.006.
  • M. Saeed and M. H. Kim, “Thermal and hydraulic performance of SCO2 PCHE with different fin configurations,” Appl. Therm. Eng., vol. 127, pp. 975–985, Dec. 2017. DOI: 10.1016/j.applthermaleng.2017.08.113.
  • J. Sung and J. Y. Lee, “Effect of tangled channels on the heat transfer in a printed circuit heat exchanger,” Int. J. Heat Mass Transf., vol. 115, pp. 647–656, Dec. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.091.
  • W. X. Chu, X. H. Li, T. Ma, Y. T. Chen and Q. W. Wang, “Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins,” Appl. Therm. Eng., vol. 114, pp. 1309–1318, Mar. 2017. DOI: 10.1016/j.applthermaleng.2016.11.187.
  • T. H. Kim, et al., “Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle,” Nucl. Eng. Design, vol. 288, pp. 110–118, Jul. 2015. DOI: 10.1016/j.nucengdes.2015.03.013.
  • S. M. Lee and K. Y. Kim, “Thermal performance of a double-faced printed circuit heat exchanger with thin plates,” J. Thermophys. Heat Transf., vol. 28, no. 2, pp. 251–257, 2014. Apr. DOI: 10.2514/1.T4086.
  • S. M. Lee and K. Y. Kim, “A parametric study of the thermal-hydraulic performance of a zigzag printed circuit heat exchanger,” Heat Transf. Eng., vol. 35, no. 13, pp. 1192–1200, Sep. 2014. DOI: 10.1080/01457632.2013.870004.
  • G. W. Koo, S. M. Lee and K. Y. Kim, “Shape optimization of inlet part of a printed circuit heat exchanger using surrogate modeling,” Appl. Therm. Eng., vol. 72, no. 1, pp. 90–96, 2014. Nov. DOI: 10.1016/j.applthermaleng.2013.12.009.
  • J. Figley, X. D. Sun, S. K. Mylavarapu and B. Hajek, “Numerical study on thermal hydraulic performance of a Printed Circuit Heat Exchanger,” Progress Nucl. Energy, vol. 68, pp. 89–96, Sep. 2013. DOI: 10.1016/j.pnucene.2013.05.003.
  • X. Y. Cui, et al., “Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2,” Int. J. Heat Mass Transf., vol. 121, pp. 354–366, Jun. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.015.
  • T. Ma, L. Li, X. Y. Xu, Y. T. Chen and Q. W. Wang, “Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature,” Energy Convers. Manag., vol. 104, pp. 55–66, Nov. 2015. DOI: 10.1016/j.enconman.2015.03.016.
  • X. Y. Xu, et al., “Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle,” Appl. Therm. Eng., vol. 70, no. 1, pp. 867–875, Sep. 2014. DOI: 10.1016/j.applthermaleng.2014.05.040.
  • W. X. Chu, K. Bennett, J. Cheng, Y. T. Chen and Q. W. Wang, “Numerical study on a novel hyperbolic inlet header in straight-channel printed circuit heat exchanger,” Appl. Therm. Eng., vol. 146, pp. 805–814, Jan. 2019. DOI: 10.1016/j.applthermaleng.2018.10.027.
  • Z. X. Du, W. S. Lin and J. M. Gu, “Numerical investigation for heat transfer of supercritical CO2 cooled in a vertical circular tube,” Heat Transf. Eng., vol. 33, no. 10, pp. 905–911, 2012. DOI: 10.1080/01457632.2012.654452.
  • H. Tokanai, Y. Ohtomo, H. Horiguchi, E. Harada and M. Kuriyama, “Heat transfer of supercritical CO2 flow in natural convection circulation system,” Heat Trans. Eng., vol. 31, no. 9, pp. 750–756, 2010. DOI: 10.1080/01457630903500924.
  • T. Ma, W. X. Chu, X. Y. Xu, Y. T. Chen and Q. W. Wang, “An experimental study on heat transfer between supercritical carbon dioxide and water near the pseudo-critical temperature in a double pipe heat exchanger,” Int. J. Heat Mass Transf., vol. 93, pp. 379–387, Feb. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.10.017.
  • A. Bruch, A. Bontemps and S. Colasson, “Experimental investigation of heat transfer of supercritical carbon dioxide flowing in a cooled vertical tube,” Int. J. Heat Mass Transf., vol. 52, no. 11-12, pp. 2589–2598, May 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.12.021.
  • W. X. Chu, X. H. Li, T. Ma, Y. T. Chen and Q. W. Wang, “Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels,” Int. J. Heat Mass Transf., vol. 113, pp. 184–194, Oct. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.059.
  • S. J. Kline and F. McClintock, “Describing uncertainties in single-sample experiments,” Mech. Eng., vol. 75, no. 1, pp. 3–8, 1953.
  • National Institute of Standards and Technology (NIST). Available: http://webbook.nist.gov/chemistry/fluid.
  • J. Jackson and W. Hall, “Forced convection heat transfer to fluids at supercritical pressure,” in Turbulent Forced Convection in Channels and Bundles: Theory and Applications to Heat Exchangers and Nuclear Reactors, vol. 2, New York, USA: Hemisphere, 1979, pp. 563–611.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.