144
Views
4
CrossRef citations to date
0
Altmetric
Articles

Selection Maps of Explicit Colebrook Approximations according to Calculation Time and Precision

, &

References

  • C. F. Colebrook and C. M. White, “Experiments with fluid friction in roughened pipes,” Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., vol. 161, no. 906, pp. 367–381, 1937. http://dx.doi.org/10.1098/rspa.1937.0150.
  • C. F. Colebrook, “Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws,” J. Inst. Civil Eng., vol. 11, no. 4, pp. 133–156, 1939. DOI: 10.1680/ijoti.1939.13150.
  • M. Salehi, A. Sleiti, and S. Idem, “Study to identify computational fluid dynamics models for use in determining HVAC duct fitting loss coefficients,” Sci. Technol. Built Environ., vol. 23, no. 1, pp. 181–191, 2017. DOI: 10.1080/23744731.2016.1204889.
  • M. Salehi, S. Idem, and A. Sleiti, “Experimental determination and computational fluid dynamics predictions of pressure loss in close-coupled elbows (RP-1682),” Sci. Technol. Built Environ., vol. 23, no. 7, pp. 1132–1141, 2017. DOI: 10.1080/23744731.2016.1268904.
  • N. K. Mylaram and S. Idem, “Pressure loss coefficient measurements of two close-coupled HVAC elbows,” HVAC&R Res., vol. 11, no. 1, pp. 133–146, 2005. DOI: 10.1080/10789669.2005.10391130.
  • R. K. Hodges, D. Kulkarni, and S. Idem, “Pressure loss in fully stretched nonmetallic flexible duct with a bend,” HVAC&R Res., vol. 19, no. 1, pp. 87–100, 2013. http://dx.doi.org/10.1080/10789669.2012.744218.
  • O. B. Adeyinka and G. F. Naterer, “Measured turbulent entropy production with large eddy particle image velocimetry,” Exp. Fluids, vol. 42, no. 6, pp. 881–891, 2007. DOI: 10.1007/s00348-007-0292-4.
  • J. MacKenzie, D. Söderberg, A. Swerin, and F. Lundell, “Turbulent stress measurements with phase-contrast magnetic resonance through tilted slices,” Exp. Fluids, vol. 58, no. 5, pp. 51–62, 2017. DOI: 10.1007/s00348-017-2328-8.
  • K. Nilpueng and S. Wongwises, “Numerical simulation of refrigerants flowing through short-tube orifices during flashing process,” HVAC&R Res., vol. 19, no. 2, pp. 159–174, 2013. http://dx.doi.org/10.1080/10789669.2012.751812.
  • A. Paruchuri and S. Idem, “Determine the absolute roughness of phenolic duct (RP-1764),” Sci. Technol. Built Environ., vol. 25, no. 4, pp. 409–420, 2019. DOI: 10.1080/23744731.2018.1539616.
  • B. Crittenden and N. Alderman, “Mechanisms by which fouling can increase overall heat transfer coefficients,” Heat Transfer Eng., vol. 13, no. 4, pp. 32–41, 1992. DOI: 10.1080/01457639208939786.
  • F. Fiorelli and O. Silvares, “Refrigerant mixtures flow through capillary tubes: a comparison between homogeneous and separated-flow models,” HVAC&R Res., vol. 9, no. 1, pp. 33–53, 2003. DOI: 10.1080/10789669.2003.10391055.
  • G. P. Celata, “Single-phase heat transfer and fluid flow in micropipes,” Heat Transfer Eng., vol. 25, no. 3, pp. 13–22, 2004. DOI: 10.1080/01457630490280029.
  • P. Zhang, “Flow and heat transfer characteristics of liquid nitrogen in mini-/microchannels,” Heat Transfer Eng., vol. 34, no. 2-3, pp. 201–212, 2013. DOI: 10.1080/01457632.2013.703543.
  • S. Wang, J. Wen, and Y. Li, “Experimental investigation of heat transfer and pressure drop in a mini-channel shell and tube heat exchanger,” Appl. Therm. Eng., vol. 29, no. 11, pp. 2433–2438, 2009. DOI: 10.1016/j.applthermaleng.2008.12.008.
  • J. Leverette, K. Gebke, and S. Idem, “Pressure and velocity variation in a fabric air dispersion system,” HVAC&R Res., vol. 20, no. 8, pp. 862–874, 2014. DOI: 10.1080/10789669.2014.957592.
  • S. Duong, R. Craven, S. Garner, and S. Idem, “A novel evaporative cooling tower constructed from an inflatable fabric duct,” Sci. Technol. Built Environ., vol. 24, no. 3, pp. 1–34, 2018. DOI: 10.1080/23744731.2018.1460146.
  • M. Esfahani, M. R. Nunna, L. E. Mohseni, K. Nawaz, and G. Cunningham, “Experimental study on heat transfer and pressure drop of in-house synthesized graphene oxide nanofluids,” Heat Transfer Eng., vol. 40, no. 20, pp. 1722–1735, 2019. DOI: 10.1080/01457632.2018.1497001.
  • S. E. Haaland, “Simple and explicit formulas for the friction factor in turbulent pipe flow,” J. Fluids Eng., vol. 105, no. 1, pp. 89–90, 1983. DOI: 10.1115/1.3240948.
  • D. Brkić, “Review of explicit approximations to the Colebrook relation for flow friction,” J. Pet. Sci. Eng., vol. 77, no. 1, pp. 34–48, 2011. DOI: 10.1016/j.petrol.2011.02.006.
  • A. Çebi, E. Akdogan, A. Celen, and A. Dalkilic, “Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks,” Heat Mass Transfer, vol. 53, no. 2, pp. 673–685, 2016. DOI: 10.1007/s00231-016-1850-1.
  • S. Eckels and G. D. Holthaus, “Single-phase heat transfer and pressure drop performance in smooth tubes with R-22, R-134a, R-407C, and R-410A at superheated conditions with lubricant mixtures (RP-1067),” HVAC&R Res., vol. 10, no. 4, pp. 421–440, 2004. DOI: 10.1080/10789669.2004.10391112.
  • L. E. Muzzo, D. Pinho, L. E. M. Lima, and L. F. Ribeiro, “Accuracy/speed analysis of pipe friction factor correlations,” INCREaSE 2019: Proceedings of the 2nd International Congress on Engineering and Sustainability in the XXI Century, Faro, Portugal, Oct. 9–11, 2019. http://dx.doi.org/10.1007/978-3-030-30938-1_51.
  • P. Rollmann and K. Spindler, “Explicit representation of the implicit Colebrook–White equation,” Case Stud. Therm. Eng., vol. 5, pp. 41–47. 2015. DOI: 10.1016/j.csite.2014.12.001.
  • D. Brkić, “A note on explicit approximations to Colebrook’s friction factor in rough pipes under highly turbulent cases,” Int. J. Heat Mass Transfer, vol. 93, pp. 513–515, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.08.109.
  • M. M. Shaikh, S. R. Massan, and A. I. Wagan, “A new explicit approximation to Colebrook’s friction factor in rough pipes under highly turbulent cases,” Int. J. Heat Mass Transfer, vol. 88, pp. 538–543, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.05.006.
  • M. Schultz and A. Myers, “Comparison of three roughness function determination methods,” Exp. Fluids, vol. 35, no. 4, pp. 372–379, 2003. DOI: 10.1007/s00348-003-0686-x.
  • U. Şahin, “A new non-iterative friction factor correlation for heat transfer fluids in absorber tube of parabolic trough collector,” Eng. Sci. Technol., Int. J., vol. 21, no. 1, pp. 89–98, 2018. DOI: 10.1016/j.jestch.2018.02.004.
  • T. Hirsch, J. F. Feldhoff, K. Hennecke, and R. Pitz-Paal, “Advancements in the field of direct steam generation in linear solar concentrators - a review,” Heat Transfer Eng., vol. 35, no. 3, pp. 258–271, 2014. DOI: 10.1080/01457632.2013.825172.
  • P. Swamee and A. K. Jain, “Explicit equations for pipe flow problems,” J. Hydraulics Div., vol. 102, pp. 657–664, 1976.
  • S. Ateş, “Hydraulic modelling of closed pipes in loop equations of water distribution networks,” Appl. Math. Modell., vol. 40, no. 2, pp. 966–983, 2016. DOI: 10.1016/j.apm.2015.06.017.
  • J. Rojas, C. Verde, L. Torres, , and E. Pérez, “On-line head loss identification for monitoring of pipelines,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 748–754, 2018. DOI: 10.1016/j.ifacol.2018.09.659.
  • A. López-Benito, F. J. Elorza Tenreiro, and L. C. Gutiérrez-Pérez, “Steady-state non-isothermal flow model for natural gas transmission in pipes,” Appl. Math. Modell., vol. 40, no. 23-24, pp. 10020–10037, 2016. DOI: 10.1016/j.apm.2016.06.057.
  • M. Chaczykowski, “Transient flow in natural gas pipeline - The effect of pipeline thermal model,” Appl. Math. Modell., vol. 34, no. 4, pp. 1051–1067, 2010. DOI: 10.1016/j.apm.2009.07.017.
  • L. Kim, K. Son, D. Sarker, J. Jeong, and S. Lee, “An assessment of models for predicting refrigerant characteristics in adiabatic and non-adiabatic capillary tubes,” Heat Mass Transfer, vol. 47, no. 2, pp. 163–180, 2011. DOI: 10.1007/s00231-010-0697-0.
  • S. Fries, S. Skusa, and A. Luke, “Heat transfer and pressure drop of condensation of hydrocarbons in tubes,” Heat Mass Transfer, vol. 55, no. 1, pp. 33–40, 2019. DOI: 10.1007/s00231-018-2318-2.
  • G. J. Brereton and J. Yuan, “Wall-roughness eddy viscosity for Reynolds-averaged closures,” Int. J. Heat Fluid Flow, vol. 73, pp. 74–81, 2018. DOI: 10.1016/j.ijheatfluidflow.2018.07.009.
  • J. M. Barros, M. P. Schultz, and K. A. Flack, “Measurements of skin-friction of systematically generated surface roughness,” Int. J. Heat Fluid Flow, vol. 72, pp. 1–7, 2018. DOI: 10.1016/j.ijheatfluidflow.2018.04.015.
  • B. Aupoix, “Improved heat transfer predictions on rough surfaces,” Int. J. Heat Fluid Flow, vol. 56, pp. 160–171, 2015. DOI: 10.1016/j.ijheatfluidflow.2015.07.007.
  • D. Taler, “A new heat transfer correlation for transition and turbulent fluid flow in tubes,” Int. J. Therm. Sci., vol. 108, pp. 108–122, 2016. DOI: 10.1016/j.ijthermalsci.2016.04.022.
  • D. Taler, “Determining velocity and friction factor for turbulent flow in smooth tubes,” Int. J. Therm. Sci., vol. 105, pp. 109–122, 2016. DOI: 10.1016/j.ijthermalsci.2016.02.011.
  • R. Laskowski, “Relations for steam power plant condenser performance in off-design conditions in the function of inlet parameters and those relevant in reference conditions,” Appl. Therm. Eng., vol. 103, pp. 528–536, 2016. DOI: 10.1016/j.applthermaleng.2016.04.127.
  • V. Mrzljak, I. Poljak, and V. V. Medica, “Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier,” Appl. Therm. Eng., vol. 119, pp. 331–346, 2017. DOI: 10.1016/j.applthermaleng.2017.03.078.
  • H. Hajebzadeh, A. N. M. Ansari, and S. Niazi, “Mathematical modeling and validation of a 320 MW tangentially fired boiler: A case study,” Appl. Therm. Eng., vol. 146, pp. 232–242, 2019. DOI: 10.1016/j.applthermaleng.2018.09.102.
  • V. Mrzljak, I. Poljak, and V. V. Medica, “Thermodynamical analysis of high-pressure feed water heater in steam propulsion system during exploitation,” Shipbuilding: theory and practice of naval architecture,” Mar. Eng. Ocean Eng., vol. 68, no. 2, pp. 45–61, 2017. DOI: 10.21278/brod68204.
  • A. Toptan, N. W. Porter, R. K. Salko, and M. N. Avramova, “Implementation and assessment of wall friction models for LWR core analysis,” Ann. Nucl. Energy, vol. 115, pp. 565–572, 2018. DOI: 10.1016/j.anucene.2018.02.022.
  • J. H. Yang, D. J. Euh, H. K. Cho, and G. C. Park, “Development of wall and interfacial friction models for two-dimensional film flow with local measurement methods,” Nucl. Eng. Des., vol. 336, pp. 141–153, 2018. DOI: 10.1016/j.nucengdes.2017.10.015.
  • D. Brkić and P. Praks, “Colebrook’s flow friction explicit approximations based on fixed-point iterative cycles and symbolic regression,” Computation, vol. 7, no. 3, pp. 48–59, 2019. DOI: 10.3390/computation7030048.
  • G. Papaevangelou, C. Evangelides, and C. Tzimopoulos, “A new explicit equation for the friction coefficient in the Darcy-Weisbach equation,” Proceedings of the Tenth Conference on Protection and Restoration of the Environment, Corfu, Greece, Jul. 6–9, 2010.
  • A. Avci and I. Karagoz, “A novel explicit equation for friction factor in smooth and rough pipes,” J. Fluids Eng., vol. 131, no. 6, pp. 66–69, 2009. DOI: 10.1115/1.3129132.
  • D. Buzzelli, “Calculating friction in one step,” Mach. Des., vol. 80, pp. 54–55, 2008.
  • A. R. Vatankhah and S. Kouchakzadeh, “Discussion of “Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook” by J. R. Sonnad and Shetan C. T. Goudar,” J. Hydraulic Eng., vol. 134, no. 8, pp. 1187–1187, 2008. DOI: 10.1061/(ASCE)0733-9429(2008)134:8(1187).
  • J. R. Sonnad and C. T. Goudar, “Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook-White equation,” J. Hydraulic Eng., vol. 132, no. 8, pp. 863–867, 2006. DOI: 10.1061/(ASCE)0733-9429(2006)132:8(863).
  • E. Romeo, C. Royo, and A. Monzon, “Improved explicit equation for estimation of the friction factor in rough and smooth pipes,” Chem. Eng. J., vol. 86, no. 3, pp. 369–374, 2002. DOI: 10.1016/S1385-8947(01)00254-6.
  • G. Manadilli, “Replace implicit equations with signomial functions,” Chem. Eng., vol. 104, no. 8, pp. 129–130, 1997.
  • T. K. Serghides, “Estimate friction factor accurately,” Chem. Eng., vol. 91, no. 5, pp. 63–64, 1984.
  • D. J. Zigrang and N. D. Sylvester, “Explicit approximations to the solution of Colebrook’s friction factor equation,” AIChE J., vol. 28, no. 3, pp. 514–515, 1982. DOI: 10.1002/aic.690280323.
  • D. I. H. Barr, Colebrook White, “Solutions of the Colebrook-White function for resistance to uniform turbulent flow,” Proc. Inst. Civil Eng., vol. 71, no. 2, pp. 529–535, 1981. DOI: 10.1680/iicep.1981.1895.
  • G. F. Round, “An explicit approximation for the friction factor‐Reynolds number relation for rough and smooth pipes,” Can. J. Chem. Eng., vol. 58, no. 1, pp. 122–123, 1980. DOI: 10.1002/cjce.5450580119.
  • N. H. Chen, “An explicit equation for friction factor in pipe,” Ind. Eng. Chem. Fundam., vol. 18, no. 3, pp. 296–297, 1979. DOI: 10.1021/i160071a019.
  • S. W. Churchill, “Friction-factor equation spans all fluid-flow regimes,” Chem. Eng. J., vol. 84, pp. 91–92, 1977.
  • A. K. Jain, “Accurate explicit equation for friction,” J. Hydraulics Div., vol. 102, no. 5, pp. 674–677, 1976.
  • S. W. Churchill, “Empirical expressions for the shear stress in turbulent flow in commercial pipe,” AIChE J., vol. 19, pp. 375–376, 1973. DOI: 10.1002/aic.690190228.
  • B. Eck, Technische Strömungslehre. New York: Springer, 1973.
  • D. J. Wood, “An explicit friction factor relationship,” Civil Eng. J., vol. 36, no. 12, pp. 60–61, 1966.
  • L. F. Moody, “An approximate formula for pipe friction factors,” Trans. ASME, vol. 69, pp. 1005–1011, 1947.
  • S. Genić, et al., “A review of explicit approximations of Colebrook’s Equation,” FME Trans., vol. 39, no. 2, pp. 67–71, 2011.
  • L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM Trans. Math. Software, vol. 4, no. 1, pp. 34–50, 1978. DOI: 10.1145/355769.355773.
  • V. V. Medica, B. Pavković, and V. Mrzljak, “Numerical model for on-condition monitoring of condenser in coal-fired power plants,” Int. J. Heat Mass Transfer, vol. 117, pp. 912–923, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.047.
  • G. R. Ahmadi and D. Toghraie, “Energy and exergy analysis of Montazeri steam power plant in Iran,” Renew. Sustain. Energy Rev., vol. 56, pp. 454–463, 2016. http://dx.doi.org/10.1016/j.rser.2015.11.074. DOI: 10.1016/j.rser.2015.11.074.
  • A. Naserbegi, M. Aghaie, A. Minuchehr, and G. Alahyarizadeh, “A novel exergy optimization of Bushehr nuclear power plant by gravitational search algorithm (GSA),” Energy, vol. 148, pp. 373–385, 2018. DOI: 10.1016/j.energy.2018.01.119.
  • T. Koroglu and O. S. Sogut, “Conventional and advanced exergy analyses of a marine steam power plant,” Energy, vol. 163, pp. 392–403, 2018. DOI: 10.1016/j.energy.2018.08.119.
  • V. Mrzljak, I. Poljak, and T. Mrakovčić, “Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier,” Energy Convers. Manage., vol. 140, pp. 307–323, 2017. DOI: 10.1016/j.enconman.2017.03.007.
  • M. Moran, H. Shapiro, D. D. Boettner, and M. B. Bailey, Fundamentals of Engineering Thermodynamics, 7th ed. Danvers, MA, USA: John Wiley and Sons, Inc., 2011.
  • Z. Schwartz, et al., “Effect of micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo,” J. Bone Joint Surg., vol. 90, no. 11, pp. 2485–2498, 2008. DOI: 10.2106/JBJS.G.00499.
  • G. D. Revankar, R. Shetty, S. S. Rao, and N. Gaitonde, “Analysis of surface roughness and hardness in titanium alloy machining with polycrystalline diamond tool under different lubricating modes,” Mater. Res., vol. 17, no. 4, pp. 1010–1022, 2014. DOI: 10.1590/1516-1439.265114.
  • A. Toloei, V. Stoilov, and D. Northwood, “The relationship between surface roughness and corrosion,” ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, CA, USA, Nov. 15–21, 2013. DOI: 10.1115/IMECE2013-65498.
  • “KRT Product Supply Ltd.” [Online]. Available: http://www.krtproduct.com. Accessed: Feb. 12, 2019.
  • “Industria ControlPro S.A de C.V.” [Online]. Available: http://www.industriascontrolpro.com. Accessed: Feb. 12, 2019.
  • “GHM Messtechnik GmbH Kompetenz-Center Greisinger.” [Online]. Available: https://www.greisinger.de. Accessed Feb. 15, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.