2,337
Views
46
CrossRef citations to date
0
Altmetric
Articles

Additive Manufacturing for Enhancing Thermal Dissipation in Heat Sink Implementation: A Review

, , &

References

  • R. Tummala, Fundamentals of Microsystems Packaging. New York, NY: Mcgraw-Hill, 2001,
  • American Society of Heating“ Refrigerating and air-conditioning engineers,” Datacom Equipment Power Trends and Cooling Applications. 2nd ed., Atlanta, GA, USA: ASHRAE, 2012,
  • A. C. Kheirabadi and D. Groulx, “Cooling of server electronics: a design review of existing technology,” Appl. Therm. Eng, vol. 105, pp. 622–638, Jul. 2016. DOI: 10.1016/j.applthermaleng.2016.03.056.
  • G. Huang, Y. Zhu, Z. Liao, R. Xu and P. Jiang, “Biomimetic self-pumping transpiration cooling for additive manufactured porous module with tree-like micro-channel,” Int. J. Heat Mass Transfer, vol. 131, pp. 403–410, 2019. Nov DOI: DOI: 10.1016/j.ijheatmasstransfer.2018.07.143.
  • K. V. Wong and A. Hernandez, “A review of additive manufacturing,” ISRN Mech. Eng, vol. 2012, pp. 1–10, 2012. vol. 10 pages, Aug. 2012. DOI: 10.5402/2012/208760.
  • D. D. Gu, W. Meiners, K. Wissenbach and R. Poprawe, “Laser additive manufacturing of metallic components: Materials, processes and mechanisms,” Int. Mater. Rev, vol. 57, no. 3, pp. 133–164, Nov. 2012. DOI: 10.1179/1743280411Y.0000000014.
  • N. Travitzky, et al., “Additive manufacturing of ceramic‐based materials,” Adv. Eng. Mater, vol. 16, no. 6, pp. 729–754, Apr. 2014. [Mismatch] DOI: 10.1002/adem.201400097.
  • D. C. Deisenroth, et al., “Review of heat exchangers enabled by polymer and polymer composite additive manufacturing,” Heat Transfer Eng, vol. 39, no. 19, pp. 1652–1668, Nov. 2017. DOI: 10.1080/01457632.2017.1384280.
  • Formlabs. The Ultimate Guide to Stereolithography (SLA) 3D Printing, MA: Formlabs, Inc., Somerville. [Online]. Available: https://formlabs.com/blog/ultimate-guide-to-stereolithography-sla-3d-printing. Accessed: Aug. 17, 2018.
  • C. K. Chua, K. F. Leong and C. S. Lim, Rapid Prototyping: Principles and Applications, Singapore: World Scientific, 2003.
  • Materialgeeza, “Schematic of selective laser melting,” [Online]. Available: https://en.wikipedia.org/wiki/Selective_laser_melting#/media/File:Selective_laser_melting_system_schematic.jpg. Accessed: Feb. 27, 2019. Distributed under CC BY-SA 3.0.
  • C. Y. Yap, et al., “Review of selective laser melting: Materials and applications,” Appl. Phys. Rev, vol. 2, no. 4, pp. 041101, 2015., 21 pages), Dec. DOI: 10.1063/1.4935926.
  • F. Klocke, H. Wirtz and W. Meiners, Direct Manufacturing of Metal Prototypes and Prototype Tools”, Presented at the 7th Solid Freeform Fabrication Symposium, Houston, TX, USA, Aug.12–14, 1996.
  • M. A. Garcia, C. Garcia-Pando and C. Marto, “Conformal cooling in moulds with special geometry,” in Innovative Developments in Virtual and Physical Prototyping: Proceedings of the 5th International Conference on Advanced Research in Virtual and Rapid Prototyping, 1st ed., P. J. Bartolo et al., Eds. Boca Raton, FL: CRC, 2011, pp. 409–412.
  • I. Yadroitsev, P. Bertrand, B. Laget and I. Smurov, “Application of laser assisted technologies for fabrication of functionally graded coatings and objects for the International Thermonuclear Experimental Reactor components,” J. Nucl. Mater., vol. 362, no. 2–3, pp. 189–196, May 2007. DOI: 10.1016/j.jnucmat.2007.01.078.
  • N. K. Tolochko, et al., “Absorptance of powder materials suitable for laser sintering,” Rapid Prototyping J, vol. 6, no. 3, pp. 155–161, Sep. 2000, DOI: 10.1108/13552540010337029.
  • E. Brandl, U. Heckenberger, V. Holzinger and D. Buchbinder, “Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior,” Mater. Des., vol. 34, pp. 159–169, Feb. 2012. DOI: 10.1016/j.matdes.2011.07.067.
  • M. Wong, S. Tsopanos, C. J. Sutcliffe and I. Owen, “Selective laser melting of heat transfer devices,” Rapid Prototyping J., vol. 13, no. 5, pp. 291–297, Oct. 2007. DOI: 10.1108/13552540710824797.
  • P. Frigola, et al., “Fabricating copper components with electron beam melting.” Advanced Materials & Processes, vol. 172, no. 7, pp. 20–24, ASM International, July 2014.
  • A. B. Spierings, C. Leinenbach, C. Kenel and K. Wegener, “Processing of metal-diamond-composites using selective laser melting,” Rapid Prototyping J, vol. 21, no. 2, pp. 130–136, 2015. Mar. DOI: 10.1108/RPJ-11-2014-0156.
  • M. Norfolk and H. Johnson, “Solid-State Additive Manufacturing for Heat Exchangers,” JOM, vol. 67, no. 3, pp. 655–659, Feb. 2015. DOI: 10.1007/s11837-015-1299-6.
  • Y. Cormier, P. Dupuis, B. Jodoin and A. Corbeil, “Net shape fins for compact heat exchanger produced by cold spray,” J Therm Spray Tech, vol. 22, no. 7, pp. 1210–1221, Oct. 2013. DOI: 10.1007/s11666-013-9968-x.
  • A. Wegner and G. Witt, “Design for Laser Sintering,” J. Plast. Technol, vol. 3, pp. 252–277, Mar. 2012.
  • D. Thomas, The Development of Design Rules for Selective Laser Melting, University of Wales, UK. [Online]. Available: http://hdl.handle.net/10369/913. Accessed: 6 Apr. 6, 2013,
  • G. A. O. Adam and D. Zimmer, “On design for additive manufacturing: Evaluating geometrical limitations,” Rapid Prototyping J, vol. 21, no. 6, pp. 662–670, Oct. 2015. DOI: 10.1108/RPJ-06-2013-0060.
  • M. Wong, I. Owen and C. J. Sutcliffe, “Pressure loss and heat transfer through heat sinks produced by selective laser melting,” Heat Transfer Eng, vol. 30, no. 13, pp. 1068–1076, Jul. 2009. DOI: 10.1080/01457630902922228.
  • M. Wong, I. Owen, C. J. Sutcliffe and A. Puri, “Convective heat transfer and pressure losses across novel heat sinks fabricated by selective laser melting,” Int. J. Heat Mass Transfer, vol. 52, no. 1-2, pp. 281–288, Jan. 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.06.002.
  • D. E. Metzger, W. B. Shepard, and S. W. Haley, “Row resolved heat transfer variations in pin-fin arrays including effects of non-uniform arrays and flow convergence,” presented at the ASME 1986 International Gas Turbine Conference and Exhibit, Jun. 8, 1986. Dusseldorf, West Germany.DOI: 10.1115/86-GT-132.
  • A. Žukauskas, “Heat transfer from tubes in crossflow,” In Advances in Heat Transfer, Vol. 8, J. P. Hartnett and T. F. Irvine Jr., Eds. Amsterdam, the Netherlands: Elsevier, 1973, pp. 93–160.
  • F. E. Faulkner, Analytical Investigation of Chord Size and Cooling Methods on Turbine Blade Cooling Requirements,” Washington, DC: NASA, NASA CR-120883, 1971.
  • J. Y. Ho, K. K. Wong, K. C. Leong and T. N. Wong, “Convective heat transfer performance of airfoil heat sinks fabricated by selective laser melting,” Int. J. Therm. Sci, vol. 114, pp. 213–228, Apr. 2017. DOI: 10.1016/j.ijthermalsci.2016.12.016.
  • K. K. Wong, J. Y. Ho, K. C. Leong and T. N. Wong, “Fabrication of heat sinks by selective laser melting for convective heat transfer applications,” Virtual Phys. Prototyp, vol. 11, no. 3, pp. 159–165, Jul. 2016. DOI: 10.1080/17452759.2016.1211849.
  • B. A. Brigham and G. J. VanFossen, “Length to Diameter Ratio and Row Number Effects in Short Pin Fin Heat Transfer,” ASME. J. Eng. Gas Turbines Power, vol. 106, no. 1, pp. 241–244, Jan. 1984. DOI: 10.1115/1.3239541.
  • Q. Li, Z. Chen, U. Flechtner and H. J. Warnecke, “Heat transfer and pressure drop characteristics in rectangular channels with elliptic pin fins,” Int. J. Heat Fluid Flow, vol. 19, no. 3, pp. 245–250, June 1998. DOI: 10.1016/S0142-727X(98)00003-4.
  • Z. Chen, Q. Li, D. Meier and H. J. Warnecke, “Convective heat transfer and pressure loss in rectangular ducts with drop-shaped pin fins,” Heat Mass Transfer, vol. 33, no. 3, pp. 219–224, Dec. 1997. DOI: 10.1007/s002310050181.
  • V. B. Grannis and E. M. Sparrow, “Numerical simulation of fluid flow through an array of diamond-shaped pin fins,” Numer. Heat Transfer, Part A, vol. 19, no. 4, pp. 381–403, Jun. 1991. DOI: 10.1080/10407789108944856.
  • O. N. Şara, “Performance analysis of rectangular ducts with staggered square pin fins,” Energy Convers. Manage, vol. 44, no. 11, pp. 1787–1803, Jul. 2003. DOI: 10.1016/S0196-8904(02)00185-1.
  • A. Farjam, Y. Cormier, P. Dupuis, B. Jodoin and A. Corbeil, “Influence of alumina addition to Aluminum fins for compact heat exchangers produced by cold spray additive manufacturing,” J Therm Spray Tech, vol. 24, no. 7, pp. 1256–1268, Oct. 2015. DOI: 10.1007/s11666-015-0305-4.
  • E. Irissou, J. G. Legoux, A. N. Ryabinin, B. Jodoin and C. Moreau, “Review on Cold Spray Process and Technology: Part I—Intellectual Property,” J Therm Spray Tech, vol. 17, no. 4, pp. 495–516, Dec. 2008. DOI: 10.1007/s11666-008-9203-3.
  • Y. Cormier, P. Dupuis, A. Farjam, A. Corbeil and B. Jodoin, “Additive manufacturing of pyramidal pin fins: Height and fin density effects under forced convection,” Int. J. Heat Mass Transfer, vol. 75, pp. 235–244, Aug. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.053.
  • K. L. Kirsch and K. A. Thole, “Pressure loss and heat transfer performance for additively and conventionally manufactured pin fin arrays,” Int. J. Heat Mass Transfer, vol. 108, pp. 2502–2513, May 2017. part B, DOI: 10.1016/j.ijheatmasstransfer.2017.01.095.
  • J. K. Ostanek, “Flowfield Interactions in Low Aspect Ratio Pin-Fin Arrays,” PhD dissertation, Dept. Mech. Eng., The Pennsylvania State University, PA, USA, 2012
  • S. A. Lawson, A. A. Thrift, K. A. Thole and A. Kohli, “Heat transfer from multiple row arrays of low aspect ratio pin fins,” Int. J. Heat Mass Transfer, vol. 54, no. 17-18, pp. 4099–4109, Aug. 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.04.001.
  • C. K. Stimpson, J. C. Snyder, K. A. Thole and D. Mongillo, “Roughness effects on flow and heat transfer for additively manufactured channels,” J. Turbomach, vol. 138, no. 50, pp. 51008, 10 pages), Jan. 2016. DOI: 10.1115/1.4032167.
  • M. E. Lyall, A. A. Thrift, K. A. Thole and A. Kohli, “Heat transfer from low aspect ratio pin fins,” J. Turbomach, vol. 133, no. 10, pp. 11001, 10 pages, Sep. 2010. DOI: 10.1115/1.2812951.
  • J. Armstrong and D. Winstanley, “A review of staggered array pin fin heat transfer for turbine cooling applications,” J. Turbomach, vol. 110, no. 1, pp. 94–103, Jan. 1988. DOI: 10.1115/1.3262173.
  • K. K. Ferster, K. L. Kirsch and K. A. Thole, “Effects of Geometry and Spacing in Additively Manufactured Microchannel Pin Fin Arrays,” ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, presented at the Charlotte, NC, USA, Jun. 26–30, 2017. DOI: 10.1115/GT2017-63442.
  • J. H. Cohen, “Development of novel tapered pin fin geometries for additive manufacturing of compact heat exchangers,” PhD dissertation, Dept. Mech. Eng., The University of Texas, Austin, TX, USA, 2016.
  • P. Dupuis, Y. Cormier, M. Fenech and B. Jodoin, “Heat transfer and flow structure characterization for pin fins produced by cold spray additive manufacturing,” Int. J. Heat Mass Transf, vol. 98, pp. 650–661, Jul. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.069.
  • K. Garde, “Design And Manufacture Of An Oil Cooler By Additive Manufacturing.” MS Dissertation, Dept. Mech. Eng., University of Minnesota, MN, USA, 2017.
  • J. Nikuradse, “Laws of flow in rough pipes,” NACA, Washington, DC, USA, Tech. Memorandum 1292, 1933. [translated from German, 1950].
  • C. F. Colebrook, et al., “Correspondence. Turbulent Flow in Pipes, with Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws. (Includes Plates),” J. Inst. Civ. Eng., vol. 12, no. 8, pp. 393–422, Oct. 1939, DOI: 10.1680/ijoti.1939.14509.
  • S. E. Haaland, “Simple and explicit formulas for the friction factor in turbulent pipe flow,” J. Fluids Eng., vol. 105, no. 1, pp. 89–90, Mar. 1983. DOI: 10.1115/1.3240948.
  • D. F. Dipprey and R. H. Sabersky, “Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers,” Int. J. Heat Mass Transfer, vol. 6, no. 5, pp. 329–353, May 1963. DOI: 10.1016/0017-9310(63)90097-8.
  • R. L. Webb, E. R. G. Eckert and R. Goldstein, “Heat transfer and friction in tubes with repeated-rib roughness,” Int. J. Heat Mass Transfer, vol. 14, no. 4, pp. 601–617, Apr. 1971. DOI: 10.1016/0017-9310(71)90009-3.
  • K. Ceylan and G. Kelbaliyev, “The roughness effects on friction and heat transfer in the fully developed turbulent flow in pipes,” Appl. Therm. Eng, vol. 23, no. 5, pp. 557–570, Apr. 2003. DOI: 10.1016/S1359-4311(02)00225-9.
  • X. W. Li, J. A. Meng and Z. X. Li, “Roughness enhanced mechanism for turbulent convective heat transfer,” Int. J. Heat Mass Transfer, vol. 54, no. 9-10, pp. 1775–1781, Apr. 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.12.039.
  • L. Ventola, et al., “Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering,” Int. J. Heat Mass Transfer, vol. 75, pp. 58–74, Aug. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.037.
  • G. Gioia and P. Chakraborty, “Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory,Phys. Rev. Lett., vol. 96, no. 4, pp. 044502, Jan. 2006. 044502. DOI: 10.1103/PhysRevLett.96.044502.
  • M. Yonehara, H. Okubo, C. Tadokoro, S. Sasaki and B. Prakash, “Proposal of Biomimetic Tribological System to Control Friction Behavior under Boundary Lubrication by Applying 3D Metal Printing Process,” Tribol. Online, vol. 13, no. 1, pp. 8–14, Jan. 2018. DOI: 10.2474/trol.13.8.
  • R. M. Manglik and A. E. Bergles, “Heat transfer and pressure drop correlations for the rectangular offset strip fin compact heat exchanger,” Exp. Therm. Fluid Sci, vol. 10, no. 2, pp. 171–180, Feb. 1995. DOI: 10.1016/0894-1777(94)00096-Q.
  • W. M. Kays and A. L. London, Compact Heat Exchangers, Oak Ridge, TN, USA: OSTI, 1984.
  • A. L. London and R. K. Shah, “Offset rectangular plate-fin surfaces—heat transfer and flow friction characteristics,” J. Eng. P, vol. 90, no. 3, pp. 218–228, Jul. 1968. DOI: 10.1115/1.3609175.
  • F. M. Walters, “Hypersonic research engine project-phase IIA, Category I Test Report on fin heat transfer and pressure drop testing, Data Item No. 63.02,” AiResearch Manufacturing Co., Torrance, CA, USA, Doc. AP-69-5348, 1969.
  • E. M. Sparrow and V. B. Grannis, “Pressure drop characteristics of heat exchangers consisting of arrays of diamond-shaped pin fins,” Int. J. Heat Mass Transfer, vol. 34, no. 3, pp. 589–600, Mar. 1991. DOI: 10.1016/0017-9310(91)90108-Q.
  • G. Tanda, “Heat transfer and pressure drop in a rectangular channel with diamond-shaped elements,” Int. J. Heat Mass Transfer, vol. 44, no. 18, pp. 3529–2541, Sep. 2001. DOI: 10.1016/S0017-9310(01)00018-7.
  • E. M. Sparrow, J. P. Abraham and J. C. K. Tong, “Archival correlations for average heat transfer coefficients for non-circular and circular cylinders and for spheres in crossflow,” Int. J. Heat Mass Transfer, vol. 47, no. 24, pp. 5285–5296, Nov. 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.06.024.
  • J. C. K. Tong, E. M. Sparrow, W. J. Minkowycz and J. P. Abraham, “New archive of heat transfer coefficients from square and chamfered cylinders in crossflow,” Int. J. Therm. Sci, vol. 105, pp. 218–223, Jul. 2016. DOI: 10.1016/j.ijthermalsci.2016.03.008.
  • D. L. Gee and R. L. Webb, “Forced convection heat transfer in helically rib-roughened tubes,” Int. J. Heat Mass Transfer, vol. 23, no. 8, pp. 1127–1136, Aug. 1980. DOI: 10.1016/0017-9310(80)90177-5.
  • R. J. Phillips, “Microchannel heat sinks,” Linc. Lab. J, vol. 1, pp. 31–48, Jan. 1988.
  • S. T. Kadam and R. Kumar, “Twenty first century cooling solution: Microchannel heat sinks,” Int. J. Therm. Sci, vol. 85, pp. 73–92, Nov. 2014. DOI: 10.1016/j.ijthermalsci.2014.06.013.
  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett, vol. 2, no. 5, pp. 126–129, May 1981. DOI: 10.1109/EDL.1981.25367.
  • S. G. Kandlikar, “High flux heat removal with microchannels- A roadmap of challenges and opportunities,” Heat Transfer Eng, vol. 26, no. 8, pp. 5–14, Feb. 2005. DOI: 10.1080/01457630591003655.
  • I. L. Collins, J. A. Weibel, L. Pan and S. V. Garimella, “Experimental Characterization of a Microchannel Heat Sink made by additive manufacturing,” presented at the 17th IEEE ITHERM Conference, San Diego, CA, USA, May 29-Jun. 1, 2018.
  • C. K. Stimpson, J. C. Snyder, K. A. Thole and D. Mongillo, “Scaling roughness effects on pressure loss and heat transfer of additively manufactured channels,” J. Turbomach, vol. 139, no. 20, pp. 21003, 10 pages, Feb. 2017. DOI: 10.1115/1.4034555.
  • J. C. Snyder, C. K. Stimpson, K. A. Thole and D. Mongillo, “Build direction effects on additively manufactured channels,” J. Turbomach, vol. 138, no. 50, pp. 51006, 8 pages, Jan. 2016. DOI: 10.1115/1.4032168.
  • J. Xu and J. Rios, “An Experimental Study of Single-Phase Heat Transfer inside an Additively Fabricated Microchannel Heat Exchanger,” Paper presented at the 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, May 28–31, 2019. DOI: 10.1109/ITHERM.2019.8757304.
  • F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 5th ed. Hoboken, NJ: Wiley & Sons, 2001.
  • I. L. Collins, J. A. Weibel, L. Pan and S. V. Garimella, “A permeable-membrane microchannel heat sink made by additive manufacturing,” Int. J. Heat Mass Transfer, vol. 131, pp. 1174–1183, Mar. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.126.
  • P. H. Tseng, K. T. Tsai, A. L. Chen and C. C. Wang, “Performance of novel liquid-cooled porous heat sink via 3-D laser additive manufacturing,” Int. J. Heat Mass Transfer, vol. 137, pp. 558–564, Jul. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.116.
  • B. Kwon, L. Liebenberg, A. M. Jacobi and W. P. King, “Heat transfer enhancement of internal laminar flows using additively manufactured static mixers,” Int. J. Heat Mass Transfer, vol. 137, pp. 292–300, Jul. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.133.
  • H. Keramati, F. Battaglia, M. A. Arie, F. Singer and M. M. Ohadi, “Additive Manufacturing of Compact Manifold-Microchannel Heat Exchangers Utilizing Direct Metal Laser Sintering,” Presented at the 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, May 28–31, 2019. DOI: 10.1109/ITHERM.2019.8757447.
  • R. Tiwari, R. S. Andhare, A. Shooshtari and M. Ohadi, “Development of an additive manufacturing-enabled compact manifold microchannel heat exchanger,” Appl. Therm.l Eng, vol. 147, pp. 781–788, Jan. 2019. DOI: 10.1016/j.applthermaleng.2018.10.122.
  • R. Whitt, et al., “Heat Transfer and Pressure Drop Performance of Additively Manufactured Polymer Heat Spreaders for Low-Weight Directed Cooling Integration in Power Electronics,” presented at The Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, May 28–31, 2019.
  • K. D. Gould, et al., “Liquid Jet Impingement Cooling of a Silicon Carbide Power Conversion Module for Vehicle Applications,” IEEE Trans. Power Electron, vol. 30, no. 6, pp. 2975–2984, June 2015. DOI: 10.1109/TPEL.2014.2331562.
  • G. Natarajan and R. J. Bezama, “Microjet Cooler with Distributed Returns,” Heat Transfer Eng, vol. 28, no. 8-9, pp. 779–787, Aug. 2007. DOI: 10.1080/01457630701328627.
  • T. Wei, et al., “High-Efficiency Polymer-Based Direct Multi-Jet Impingement Cooling Solution for High-Power Devices,” IEEE Trans. Power Electron, vol. 34, no. 7, pp. 6601–6612, Jul. 2019. DOI: 10.1109/TPEL.2018.2872904.
  • M. G. Guerra, C. Volpone, L. M. Galantucci and G. Percoco, “Photogrammetric measurements of 3D printed microfluidic devices,” Addit. Manuf, vol. 21, pp. 53–62, May 2018. DOI: 10.1016/j.addma.2018.02.013.
  • T. Wu, “Design and optimization of 3D printed air-cooled heat sinks based on genetic algorithms,” Paper presented at the 2017 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, Jun. 26–28, 2017. DOI: 10.1109/ITEC.2017.7993346.
  • T. Wu, B. Ozpineci and C. Ayers, “Genetic algorithm design of a 3D printed heat sink,” Paper presented at the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, Mar. 20, 2016. DOI: 10.1109/APEC.2016.7468376.
  • R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, 2nd ed. Hoboken, NJ, USA: Wiley & Sons, 2004.
  • M. Fasano, et al., “Passive heat transfer enhancement by 3D printed Pitot tube based heat sink,” Int. J. Heat Mass Transfer, vol. 74, pp. 36–39, May 2016. DOI: 10.1016/j.icheatmasstransfer.2016.03.012.
  • J. Assaad, A. Corbeil, P. F. Richer and B. Jodoin, “Novel Stacked Wire Mesh Compact Heat Exchangers Produced Using Cold Spray,” J Therm Spray Tech., vol. 20, no. 6, pp. 1192–1200, Dec. 2011. DOI: 10.1007/s11666-011-9663-8.
  • E. M. Dede, S. N. Joshi and F. Zhou, “Topology optimization, additive layer manufacturing, and experimental testing of an air-cooled heat sink,” J. Mech. Des., vol. 137, no. 11, pp. 111403, 9 pages, Oct. 2015. DOI: 10.1115/1.4030989.
  • M. C. E. Manuel and P. T. Lin, “Heat exchanger design with topology optimization. in heat exchangers-design, experiment and simulation,” in Heat Exchangers - Design, Experiment and Simulation, S. M. S. Murshed and M. M. Lopes, Eds. Rijeka, Croatia: InTech, 2017, pp. 61–92. DOI: 10.5772/66961.
  • T. Wu and A. Tovar, “Design for Additive Manufacturing of Conformal Cooling Channels using Thermal-Fluid Topology Optomization and Application in Injection Molds,” presented at the ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Quebec City, Quebec, Canada, Aug. 26–29, 2018.
  • J. Alexandersen, O. Sigmund, K. E. Meyer and B. S. Lazarov, “Design of passive coolers for light-emitting diode lamps using topology optimization,” Int. J. Heat Mass Transfer, vol. 122, pp. 138–149, 2018. Jul. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.103.
  • B. S. Lazarov, O. Sigmund, K. E. Meyer and J. Alexandersen, “Experimental validation of additively manufactured optimized shapes for passive cooling,” Appl. Eng., vol. 226, pp. 330–339, 2018. Sep. 2018. DOI: 10.1016/j.apenergy.2018.05.106.
  • Y. Han and W. F. Lu, “A Novel Design Method for Nonuniform Lattice Structures Based on Topology Optimization,” J. Mech. Des, vol. 140, no. 90, pp. 91403, 10 pages, Jul. 2018. DOI: 10.1115/1.4040546.
  • W. A. Khan, M. B. Kadri and Q. Ali, “Optimization of microchannel heat sinks using genetic algorithm,” Heat Transfer Eng., vol. 34, no. 4, pp. 279–287, 2013. Jun. 2012. DOI: 10.1080/01457632694758.
  • D. Huitink, B. M. Nafis and R. Whitt, “Helical fin design by Additive manufacturing of metal for enhanced heat sink for electronics cooling,” US Patent Application no. 16/667,720, Oct. 2019.
  • K. L. Kirsch and K. A. Thole, “Experimental investigation of numerically optimized wavy microchannels created through additive manufacturing,” J. Turbomach, vol. 140, no. 20, pp. 21002, Nov. 2017. DOI: 10.1115/1.4038180.
  • K. L. Kirsch and K. A. Thole, “Isolating the effects of surface roughness versus wall shape in numerically optimized, additively manufactured micro cooling channels,” Exp. Therm. Fluid Sci., vol. 98, pp. 227–238, 2018. Nov. 2018. DOI: 10.1016/j.expthermflusci.2018.05.030.
  • A. H. Beitelmal, M. A. Saad and C. D. Patel, “Effects of surface roughness on the average heat transfer of an impinging air jet,” Int. Commun. Heat Mass, vol. 27, no. 1, pp. 1–12, Jan. 2000. DOI: 10.1016/S0735-1933(00)00079-8.
  • Adapted from the website of United States Patent and Trademark Office. United States Department of Commerce, Washington, DC, USA. Available at: http://patft.uspto.gov/netahtml/PTO/search-bool.html. Accessed Mar. 17, 2020.
  • S. M. Thompson, Z. S. Aspin, N. Shamsaei, A. Elwany and L. Bian, “Additive manufacturing of heat exchangers: A case study on a multi-layered Ti–6Al–4V oscillating heat pipe,” Addit. Manuf., vol. 8, pp. 163–174, 2015. Oct. 2015. DOI: 10.1016/j.addma.2015.09.003.
  • W. W. Wits and D. Jafari, “Experimental Performance of a 3D-Printed Hybrid Heat Pipe-Thermosyphon for Cooling of Power Electronics”, presented at the 24th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Stockholm, Sweden, Sep. 26, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.