437
Views
12
CrossRef citations to date
0
Altmetric
Articles

Non-Uniform Magnetic Field Effect on Forced Convection Heat Transfer of Flattened Tubes Using Two-Phase Mixture Model

ORCID Icon, , ORCID Icon &

References

  • H. Najafi Khaboshan and H. R. Nazif, “The effect of multi-longitudinal vortex generation on turbulent convective heat transfer within alternating elliptical axis tubes with various alternative angles,” Case Stud. Therm. Eng., vol. 12, pp. 237–247, Sept. 2018. DOI: 10.1016/j.csite.2018.04.013.
  • A. Javadpour, M. Najafi, and K. Javaherdeh, “Experimental investigation of forced convection heat transfer and friction factor of a non-Newtonian nanofluid flow through an annulus in the presence of magnetic field,” J. Braz. Soc. Mech. Sci. Eng., vol. 40, no. 8, pp. 1–12, 2018. DOI: 10.1007/s40430-018-1326-y.
  • M. I. Afridi, M. Qasim, I. Khan, and I. Tlili, “Entropy generation in MHD mixed convection stagnation-point flow in the presence of joule and frictional heating,” Case Stud. Therm. Eng., vol. 12, pp. 292–300, Sept. 2018. DOI: 10.1016/j.csite.2018.04.002.
  • F. Selimefendigil and H. F. Öztop, “Al2O3–water nanofluid jet impingement cooling with magnetic field,” Heat Transfer Eng., vol. 41, no. 1, pp. 50–64, 2020. DOI: 10.1080/01457632.2018.1513626.
  • L. He and P. Li, “Numerical investigation on double tube-pass shell-and-tube heat exchangers with different baffle configurations,” Appl. Therm. Eng., vol. 143, pp. 561–569, Oct. 2018. DOI: 10.1016/j.applthermaleng.2018.07.098.
  • H. Najafi Khaboshan and H. R. Nazif, “Numerical analysis of heat transfer enhancement and flow structure of alternating oval tubes by considering different alternate angles under turbulent flow,” J. Comput. Appl. Res. Mech. Eng., vol. 9, no. 2, pp. 211–223, 2020. DOI: 10.22061/jcarme.2018.2974.1311.
  • H. Najafi Khaboshan and H. R. Nazif, “Entropy generation analysis of convective turbulent flow in alternating elliptical axis tubes with different angles between pitches; a numerical investigation,” Heat Mass Transfer, vol. 55, no. 10, pp. 2857–2872, 2019. DOI: 10.1007/s00231-019-02615-z.
  • M. R. Habibi and M. R. Salimpour, “Numerical study of nanofluid convective heat transfer in sinusoidal tubes,” Heat Transfer Eng., vol. 40, no. 15, pp. 1259–1267, 2019. DOI: 10.1080/01457632.2018.1460927.
  • A. Sinha, H. Chattopadhyay, A. K. Iyengar, and G. Biswas, “Enhancement of heat transfer in a fin-tube heat exchanger using rectangular winglet type vortex generators,” Int. J. Heat Mass Transfer, vol. 101, pp. 667–681, Oct. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.032.
  • J. Rahman Nezhad and S. A. Mirbozorgi, “An immersed boundary-lattice Boltzmann method to simulate chaotic micromixers with baffles,” Comput. Fluids, vol. 167, pp. 206–214, May 2018. DOI: 10.1016/j.compfluid.2018.02.031.
  • B. Lotfi and B. Sundén, “Development of new finned tube heat exchanger: innovative tube-bank design and thermohydraulic performance,” Heat Transfer Eng., vol. 41, no. 16, pp. 1–23, 2019. DOI: 10.1080/01457632.2019.1637112.
  • M. Sheikholeslami, “Influence of magnetic field on Al2O3–H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM,” J. Mol. Liq., vol. 263, pp. 472–488, Aug. 2018. DOI: 10.1016/j.molliq.2018.04.111.
  • W.-T. Yan, C. Li, and W.-B. Ye, “Numerical investigation of hydrodynamic and heat transfer performances of nanofluids in a fractal microchannel heat sink,” Heat Trans. Asian Res., vol. 48, no. 6, pp. 2329–2349, 2019. DOI: 10.1002/htj.21494.
  • M. C. Returi, R. Konijeti, and A. Dasore, “Heat transfer enhancement using hybrid nanofluids in spiral plate heat exchangers,” Heat Trans. Asian Res., vol. 48, no. 7, pp. 3128–3143, 2019. DOI: 10.1002/htj.21534.
  • E. Ebrahimnia-Bajestan, H. Niazmand, W. Duangthongsuk, and S. Wongwises, “Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime,” Int. J. Heat Mass Transfer, vol. 54, no. 19–20, pp. 4376–4388, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.05.006.
  • A. Rezaei Gorjaei and A. Shahidian, “Investigating heat transfer and skin friction using water–CuO nanofluid between eccentric channels,” Heat Transfer Eng., vol. 41, no. 19, pp. 1–14, 2019. DOI: 10.1080/01457632.2019.1649936.
  • H. Najafi Khaboshan and H. R. Nazif, “Heat transfer enhancement and entropy generation analysis of Al2O3–water nanofluid in an alternating oval cross-section tube using two-phase mixture model under turbulent flow,” Heat Mass Transfer, vol. 54, no. 10, pp. 3171–3183, 2018. DOI: 10.1007/s00231-018-2345-z.
  • S. Odenbach, Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids. Berlin: Springer, 2009.
  • M. Sheikholeslami, A. Zeeshan, and A. Majeed, “Control volume based finite element simulation of magnetic nanofluid flow and heat transport in non-Darcy medium,” J. Mol. Liq., vol. 268, pp. 354–364, Oct. 2018. DOI: 10.1016/j.molliq.2018.07.031.
  • S. Mørup, M. F. Hansen, andC. Frandsen, “1.14 – Magnetic nanoparticles,” in Comprehensive Nanoscience and Technology, D. L. Andrews, G. D. Scholes, and G. P. Wiederrecht, Eds. Amsterdam, Netherlands: Academic Press, 2011, pp. 437–491.
  • P. Razi, M. A. Akhavan-Behabadi, and M. Saeedinia, “Pressure drop and thermal characteristics of CuO–base oil nanofluid laminar flow in flattened tubes under constant heat flux,” Int. Commun. Heat Mass Transfer, vol. 38, no. 7, pp. 964–971, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.04.010.
  • R. S. Vajjha, D. K. Das, and P. K. Namburu, “Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator,” Int. J. Heat Fluid Flow, vol. 31, no. 4, pp. 613–621, 2010. DOI: 10.1016/j.ijheatfluidflow.2010.02.016.
  • H. Safikhani and A. Abbassi, “Effects of tube flattening on the fluid dynamic and heat transfer performance of nanofluids,” Adv. Powder Technol., vol. 25, no. 3, pp. 1132–1141, 2014. DOI: 10.1016/j.apt.2014.02.018.
  • N. Zhao, J. Yang, H. Li, Z. Zhang, and S. Li, “Numerical investigations of laminar heat transfer and flow performance of Al2O3–water nanofluids in a flat tube,” Int. J. Heat Mass Transfer, vol. 92, pp. 268–282, Jan. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.08.098.
  • S. Alosious, S. S. R, A. R. Nair, and K. Krishnakumar, “Experimental and numerical study on heat transfer enhancement of flat tube radiator using Al2O3 and CuO nanofluids,” Heat Mass Transfer, vol. 53, no. 12, pp. 3545–3563, 2017. DOI: 10.1007/s00231-017-2061-0.
  • H. Fazelnia, B. Sajadi, S. Azarhazin, M. A. Behabadi, and S. Zakeralhoseini, “Experimental study of the heat transfer coefficient and pressure drop of R1234yf condensing flow in flattened smooth tubes,” Int. J. Refrig., vol. 106, pp. 120–132, Oct. 2019. DOI: 10.1016/j.ijrefrig.2019.06.003.
  • A. K. Solanki and R. Kumar, “Condensation heat transfer and pressure drop characteristics of R-134a inside the flattened tubes at high mass flux and different saturation temperature,” Exp. Heat Transfer, vol. 32, no. 1, pp. 69–84, 2019. DOI: 10.1080/08916152.2018.1485781.
  • H. Najafi Khaboshan, A. Azarinia, and J. Rahmannezhad, “The effects of tube flattening on entropy generation of laminar heat transfer of copper oxide-water nanofluids flow under the circumferential and axial constant heat flux boundary conditions,” presented at the 25th Annu. Int. Conf. Mech. Eng., Tehran, Iran, May 2, 2017.
  • G. Huminic and A. Huminic, “The heat transfer performances and entropy generation analysis of hybrid nanofluids in a flattened tube,” Int. J. Heat Mass Transfer, vol. 119, pp. 813–827, Apr. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.155.
  • A. H. Jassim, T. A. Tahseen, A. W. Mustafa, M. M. Rahman, and M. Ishak, “An experimental investigation in forced convective heat transfer and friction factor of air flow over aligned round and flattened tube banks,” Heat Trans. Asian Res., vol. 48, no. 6, pp. 2350–2369, 2019. DOI: 10.1002/htj.21496.
  • A. Sacithra and A. Manivannan, “Performance analysis of solar water heater with flattened tube spiral absorber using forced circulation,” Int. J. Green Energy, vol. 16, no. 11, pp. 811–824, 2019. DOI: 10.1080/15435075.2019.1641102.
  • M. Siavashi and M. Jamali, “Heat transfer and entropy generation analysis of turbulent flow of TiO2–water nanofluid inside annuli with different radius ratios using two-phase mixture model,” Appl. Therm. Eng., vol. 100, pp. 1149–1160, May 2016. DOI: 10.1016/j.applthermaleng.2016.02.093.
  • S. Kakaç and A. Pramuanjaroenkij, “Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids – a state-of-the-art review,” Int. J. Therm. Sci., vol. 100, pp. 75–97, Feb. 2016. DOI: 10.1016/j.ijthermalsci.2015.09.021.
  • İ.O. Sert and N. Sezer-Uzol, “Numerical analysis of convective heat transfer of nanofluids in circular ducts with two-phase mixture model approach,” Heat Mass Transfer, vol. 52, no. 9, pp. 1841–1850, 2016. DOI: 10.1007/s00231-015-1655-7.
  • M. Abbaszadeh, A. Ababaei, A. A. Abbasian Arani, and A. A. Sharifabadi, “MHD forced convection and entropy generation of CuO–water nanofluid in a microchannel considering slip velocity and temperature jump,” J Braz. Soc. Mech. Sci. Eng., vol. 39, no. 3, pp. 775–790, 2017. DOI: 10.1007/s40430-016-0578-7.
  • M. Cianfrini, M. Corcione, A. Quintino, and E. Ricci, “A demonstrative study on the two-phase vs. single-phase modeling of buoyancy-driven flows of enclosed nanofluids,” Heat Transfer Eng., vol. 40, no. 1–2, pp. 1–15, 2019. DOI: 10.1080/01457632.2017.1388900.
  • M. K. Moraveji, R. M. Ardehali, and M. Transfer, “CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink,” Int. Commun. Heat Mass Transfer, vol. 44, pp. 157–164, May 2013. DOI: 10.1016/j.icheatmasstransfer.2013.02.012.
  • M. Hejazian, M. K. Moraveji, and A. Beheshti, “Comparative numerical investigation on TiO2/water nanofluid turbulent flow by implementation of single phase and two phase approaches,” Numer. Heat Transfer A, vol. 66, no. 3, pp. 330–348, 2014. DOI: 10.1080/10407782.2013.873271.
  • M. M. Rashidi, M. Nasiri, M. Khezerloo, and N. Laraqi, “Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls,” J. Magn. Magn. Mater., vol. 401, pp. 159–168, Mar. 2016. DOI: 10.1016/j.jmmm.2015.10.034.
  • C. Karcher and J. Kühndel, “Convective heat transfer in engine coolers influenced by electromagnetic fields,” Heat Mass Transfer, vol. 54, no. 8, pp. 2599–2605, 2018. DOI: 10.1007/s00231-017-2130-4.
  • G. C. Shit and S. Majee, “Magnetic field interaction with blood flow and heat transfer through diseased artery having Abdominal Aortic Aneurysm,” Eur. J. Mech. B/Fluids, vol. 71, pp. 1–14, Sept.–Oct. 2018. DOI: 10.1016/j.euromechflu.2018.03.010.
  • M. B. Gerdroodbary, M. R. Takami, and D. Ganji, “Investigation of thermal radiation on traditional Jeffery–Hamel flow to stretchable convergent/divergent channels,” Case Stud. Therm. Eng., vol. 6, pp. 28–39, Sept. 2015. DOI: 10.1016/j.csite.2015.04.002.
  • A. K. Hussein, M. Bakier, M. B. B. Hamida, and S. Sivasankaran, “Magneto-hydrodynamic natural convection in an inclined T-shaped enclosure for different nanofluids and subjected to a uniform heat source,” Alexandria Eng. J., vol. 55, no. 3, pp. 2157–2169, Sept. 2016. DOI: 10.1016/j.aej.2016.06.020.
  • R. Azizian, E. Doroodchi, T. McKrell, J. Buongiorno, L. W. Hu, and B. Moghtaderi, “Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids,” Int. J. Heat Mass Transfer, vol. 68, pp. 94–109, Jan. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.09.011.
  • S. Hariri, M. Mokhtari, M. B. Gerdroodbary, and K. Fallah, “Numerical investigation of the heat transfer of a ferrofluid inside a tube in the presence of a non-uniform magnetic field,” Eur. Phys. J. Plus., vol. 132, no. 2, pp. 1–14, 2017. DOI: 10.1140/epjp/i2017-11324-1.
  • F. Fadaei, M. Shahrokhi, A. M. Dehkordi, and Z. Abbasi, “Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field,” J. Magn. Magn. Mater., vol. 429, pp. 314–323, May 2017. DOI: 10.1016/j.jmmm.2017.01.046.
  • J. Alsarraf, R. Rahmani, A. Shahsavar, M. Afrand, S. Wongwises, and M. D. Tran, “Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube,” J. Therm. Anal. Calorim., vol. 137, no. 5, pp. 1809–1825, 2019. DOI: 10.1007/s10973-019-08078-y.
  • J. Wang, G. Li, H. Zhu, J. Luo, and B. Sundén, “Experimental investigation on convective heat transfer of ferrofluids inside a pipe under various magnet orientations,” Int. J. Heat Mass Transfer, vol. 132, pp. 407–419, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.023.
  • M. Bahiraei, M. Hangi, and A. Rahbari, “A two-phase simulation of convective heat transfer characteristics of water–Fe3O4 ferrofluid in a square channel under the effect of permanent magnet,” Appl. Therm. Eng., vol. 147, pp. 991–997, Jan. 2019. DOI: 10.1016/j.applthermaleng.2018.11.011.
  • M. Bahiraei and M. Hangi, “Flow and heat transfer characteristics of magnetic nanofluids: a review,” J. Magn. Magn. Mater, vol. 374, pp. 125–138, Jan. 2015. DOI: 10.1016/j.jmmm.2014.08.004.
  • M. Nasr, M. A. Akhavan-Behabadi, and S. E. Marashi, “Performance evaluation of flattened tube in boiling heat transfer enhancement and its effect on pressure drop,” Int. Commun. Heat Mass Transfer, vol. 37, no. 4, pp. 430–436, 2010. DOI: 10.1016/j.icheatmasstransfer.2009.11.011.
  • A. Bennia and M. N. Bouaziz, “CFD modeling of turbulent forced convective heat transfer and friction factor in a tube for Fe3O4 magnetic nanofluid in the presence of a magnetic field,” J. Taiwan Inst. Chem. Eng., vol. 78, pp. 127–136, Sept. 2017. DOI: 10.1016/j.jtice.2017.04.035.
  • A. Karimi, A. A. A. A. Al-Rashed, M. Afrand, O. Mahian, S. Wongwises, and A. Shahsavar, “The effects of tape insert material on the flow and heat transfer in a nanofluid-based double tube heat exchanger: two-phase mixture model,” Int. J. Mech. Sci., vol. 156, pp. 397–409, June 2019. DOI: 10.1016/j.ijmecsci.2019.04.009.
  • P. Barnoon, D. Toghraie, R. B. Dehkordi, and H. Abed, “MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model,” J. Magn. Magn. Mater., vol. 483, pp. 224–248, Aug. 2019. DOI: 10.1016/j.jmmm.2019.03.108.
  • H. Yamaguchi, Engineering Fluid Mechanics. Dordrecht, Netherlands: Springer, 2008.
  • B. A. Finlayson, “Spin-up of ferrofluids: The impact of the spin viscosity and the Langevin function,” Phys. Fluids, vol. 25, no. 7, pp. 1–18, 2013. DOI: 10.1063/1.4812295.
  • M. Manninen, V. Taivassalo, and and S. Kallio, On the Mixture Model for Multiphase Flow. Finland: VTT Technical Research Centre of Finland, 1996.
  • H. Ounis, G. Ahmadi, and J. B. McLaughlin, “Brownian diffusion of submicrometer particles in the viscous sublayer,” J. Colloid Interface Sci., vol. 143, no. 1, pp. 266–277, 1991. DOI: 10.1016/0021-9797(91)90458-K.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transfer, vol. 11, no. 2, pp. 151–170, 1998. DOI: 10.1080/08916159808946559.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transfer, vol. 43, no. 19, pp. 3701–3707, 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • A. Asadi, A. Hossein Nezhad, F. Sarhaddi, and T. Keykha, “Laminar ferrofluid heat transfer in presence of non-uniform magnetic field in a channel with sinusoidal wall: a numerical study,” J. Magn. Magn. Mater., vol. 471, pp. 56–63, Feb. 2019. DOI: 10.1016/j.jmmm.2018.09.045.
  • R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts. New York, NY: Academic Press, 1978.
  • D. Kim et al., “Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions,” Curr. Appl. Phys., vol. 9, no. 2, pp. e119–e123, 2009. DOI: 10.1016/j.cap.2008.12.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.