276
Views
4
CrossRef citations to date
0
Altmetric
Articles

Experimental and Numerical Investigation of Pool Boiling Heat Transfer over Different Thickness of Graphene–Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Layers on Copper Heater Surface

, , &

References

  • H. M. Kurihara and J. E. Myers, “The effects of superheat and surface roughness on boiling coefficients,” AIChE J., vol. 6, no. 1, pp. 83–91, Mar. 1960. DOI: 10.1002/aic.690060117.
  • L. Zhang, L. Fan, Z. Yu, and K. Cen, “An experimental investigation of transient pool boiling of aqueous nanofluids with graphene oxide nanosheets as characterized by the quenching method,” Int. J. Heat Mass Transf., vol. 73, pp. 410–414, Mar. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.02.043.
  • A. Jaikumar, S. G. Kandlikar, and A. Gupta, “Pool boiling enhancement through graphene and graphene oxide coatings,” Heat Transf. Eng., vol. 38, no. 14–15, pp. 1274–1284, Mar. 2017. DOI: 10.1080/01457632.2016.1242959.
  • A. Gupta, A. Jaikumar, S. G. Kandlikar, A. Rishi, and A. Layman, “A multiscale morphological insight into graphene based coatings for pool boiling applications,” Heat Transf. Eng., vol. 39, no. 15, pp. 1331–1343, Aug. 2018. DOI: 10.1080/01457632.2017.1366228.
  • N. Li and A. R. Betz, “Boiling performance of graphene oxide coated copper surfaces at high pressures,” J. Heat Transf., vol. 139, no. 11, pp. 111504–111509, Nov. 2017. DOI: 10.1115/1.4036678.
  • N. Sezer, S. A. Khan, and M. Koç, “Ammelioration of the pool boiling heat transfer performance via self-assembling of 3D porous graphene/carbon nanotube hybrid film over the heating surface,” Int. J. Heat Mass Transf., vol. 145, pp. 118732–118743, Dec. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118732.
  • L. Mao et al., “Pool boiling performance and bubble dynamics on graphene oxide nano coating surface,” Int. J. Therm. Sci., vol. 147, pp. 106154–106165, Jan. 2020. DOI: 10.1016/j.ijthermalsci.2019.106154.
  • J. M. Kim, T. Kim, J. Kim, M. H. Kim, and H. S. Ahn, “Effect of a graphene oxide coating layer on critical heat flux enhancement under pool boiling,” Int. J. Heat Mass Transf., vol. 77, pp. 919–927, Oct. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.06.017.
  • H. S. Ahn, J. M. Kim, and M. H. Kim, “Experimental study of the effect of a reduced graphene oxide coating on critical heat flux enhancement,” Int. J. Heat Mass Transf., vol. 60, pp. 763–771, Feb. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.01.052.
  • R. Kamatchi and G. Kumaresan, “Investigations on pool boiling critical heat flux, transient characteristics and bonding strength of heater wire with aqua based reduced graphene oxide nanofluids,” Chin. J. Chem. Eng., vol. 26, no. 3, pp. 445–454, Mar. 2018. DOI: 10.1016/jcjche.2017.12.006.
  • J. M. Kim, S. C. Park, B. Kong, H. B. R. Lee, and H. S. Ahn, “Effect of porous graphene networks and micropillar arrays on boiling heat transfer performance,” Exp. Therm. Fluid Sci., vol. 93, pp. 153–164, May 2018. DOI: 10.1016/j.expthermflusci.2017.12.029.
  • G. Choi, D. I. Shim, D. Lee, B. S. Kim, and H. H. Cho, “Enhanced nucleate boiling using a reduced graphene oxide-coated micropillar,” Int. Commun. Heat Mass Transf., vol. 109, pp. 104331–104338, Dec. 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104331.
  • S. D. Park, S. W. Lee, S. Kang, S. M. Kim, and I. C. Bang, “Pool boiling CHF enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments,” Nucl. Eng. Des., vol. 252, pp. 184–191, Nov. 2012. DOI: 10.1016/j.nucengdes.2012.07.016.
  • Y. Hu, H. Li, Y. He, and L. Wang, “Role of nanoparticles on boiling heat transfer performance of ethylene glycol aqueous solution based graphene nanosheets nanofluid,” Int. J. Heat Mass Transf., vol. 96, pp. 565–572, May 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.01.066.
  • A. M. Rishi, S. G. Kandlikar, and A. Gupta, “Improved wettability of graphene nanoplatelets (GNP)/copper porous coatings for dramatic improvements in pool boiling heat transfer,” Int. J. Heat Mass Transf., vol. 132, pp. 462–472, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.169..
  • M. S. El-Genk, “Nucleate boiling enhancements on porous graphite and microporous and macro–finned copper surfaces,” Heat Transf. Eng., vol. 33, no. 3, pp. 175–204, Oct. 2012. DOI: 10.1080/01457632.2011.589305.
  • D. Ciloglu, “An experimental investigation of nucleate pool boiling heat transfer of nanofluids from a hemispherical surface,” Heat Transf. Eng., vol. 38, no. 10, pp. 919–930, Jul. 2017. DOI: 10.1080/01457632.2016.1212571.
  • M. M. Rahman and M. McCarthy, “Boiling enhancement on nanostructured surfaces with engineered variations in wettability and thermal conductivity,” Heat Transf. Eng., vol. 38, no. 14–15, pp. 1285–1295, Mar. 2017. DOI: 10.1080/01457632.2016.1242961..
  • S. Mori, S. Mt Aznam, R. Yanagisawa, F. Yokomatsu, and K. Okuyama, “Measurement of a heated surface temperature using a high-speed infrared camera during critical heat flux enhancement by a honeycomb porous plate in a saturated pool boiling of a nanofluid,” Heat Transf. Eng., pp. 1–17, Jul. 2019. DOI: 10.1080/01457632.2019.1628487.
  • H. Inaoka and N. Ito, “Numerical simulation of pool boiling of a Lennard–Jones liquid,” Phys. A Stat. Mech. Appl., vol. 392, no. 18, pp. 3863–3868, Sep. 2013. DOI: 10.1016/j.physa.2013.05.002..
  • S. Ryu and S. Ko, “Direct numerical simulation of nucleate pool boiling using a two-dimensional lattice Boltzmann method,” Nucl. Eng. Des., vol. 248, pp. 248–262, Jul. 2012. DOI: 10.1016/j.nucengdes.2012.03.031.
  • S. Gong and P. Cheng, “Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method,” Int. J. Heat Mass Transf., vol. 80, pp. 206–216, Jan. 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.08.092.
  • C. Marcel, A. Clausse, C. Frankiewicz, A. Betz, and D. Attinger, “Numerical investigation into the effect of surface wettability in pool boiling heat transfer with a stochastic-automata model,” Int. J. Heat Mass Transf., vol. 111, pp. 657–665, Aug. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.035..
  • Z. Zhao et al., “Thermal performance analysis of pool boiling on an enhanced surface modified by the combination of microstructures and wetting properties,” Appl. Therm. Eng., vol. 117, pp. 417–426, May 2017. DOI: 10.1016/j.applthermaleng.2017.02.014..
  • K. Ling and W. Q. Tao, “Numerical simulation of nucleate boiling in shallow liquid,” Comput. Fluids, vol. 164, pp. 35–40, Mar. 2018. DOI: 10.1016/j.compfluid.2016.12.026..
  • N. Cheng, Y. Guo and C. Peng, “A simulation of bubble growth on heating surface in subcooled boiling water based on the heat flows derived by experiment,” Int. J. Heat Mass Transf, vol. 145, pp. 118811–118821, Dec. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118811.
  • Z. Cao, D. Sun, B. Yu, and J. Wei, “A coupled volume of fluid and level set method based on analytic PLIC for unstructured quadrilateral grids,” Numer. Heat Transf., Part B Fundam., vol. 73, no. 4, pp. 189–205, Jun. 2018. DOI: 10.1080/10407790.2018.1454758.
  • Z. Cao, J. Zhou, J. Wei, D. Sun, and B. Yu, “Experimental and numerical study on bubble dynamics and heat transfer during nucleate boiling of FC-72,” Int. J. Heat Mass Transf., vol. 139, pp. 822–831, Aug. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.05.061.
  • X. Wu, L. Lian, S. Yang, and G. He, “Highly conductive PEDOT:PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes,” J. Mater. Chem. C, vol. 4, no. 36, pp. 8528–8534, Aug. 2016. DOI: 10.1039/C6TC02424F..
  • D. Yoo, J. Kim, and J. H. Kim, “Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems,” Nano Res., vol. 7, no. 5, pp. 717–730, Apr. 2014. DOI: 10.1007/s12274-014-0433-z..
  • S. Rattan, P. Singhal, and A. L. Verma, “Synthesis of PEDOT:PSS (poly(3,4‐ethylenedioxythiophene))/poly(4‐styrenesulfonate))/NGPS (nanographitic platelets) nano composites as chemiresistive sensors for detection of nitroaromatics,” Polym. Eng. Sci., vol. 53, no. 10, pp. 2045–2052, Oct. 2013. DOI: 10.1002/pen.23466.
  • Y. Hernandez, M. Lotya, D. Rickard, S. D. Bergin, and J. N. Coleman, “Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery,” Langmuir, vol. 26, no. 5, pp. 3208–3213, Nov. 2010. DOI: 10.1021/la903188a..
  • M. Döbbelin et al., “A new approach to hydrophobic and water-resistant poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films using ionic liquids,” J. Mater. Chem., vol. 18, no. 44, pp. 5354–5358, Oct. 2008. DOI: 10.1039/B808723G..
  • H. Wang, “Electrically conducting PEDOT sol-gel derived coating,” U.S. Patent 0037259, Feb. 9, 2017.
  • Y. Si and E. T. Samulski, “Synthesis of water soluble graphene,” Nano Lett., vol. 8, no. 6, pp. 1679–1682, May 2008. DOI: 10.1021/nl080604h..
  • A. V. Alaferdov, A. Gholamipour-Shirazi, M. A. Canesqui, Y. A. Danilov, and S. A. Moshkalev, “Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite,” Carbon, vol. 69, pp. 525–535, Apr. 2014. DOI: 10.1016/j.carbon.2013.12.062..
  • D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Dispersion behaviour of graphene oxide and reduced graphene oxide,” J Colloid Interface Sci., vol. 430, pp. 108–112, Sep. 2014. DOI: 10.1016/j.jcis.2014.05.033.
  • D. W. Johnson, B. P. Dobson, and K. S. Coleman, “A manufacturing perspective on graphene dispersions,” Curr. Opin. Colloid Interface Sci., vol. 20, no. 5–6, pp. 367–382, Nov. 2015. DOI: 10.1016/j.cocis.2015.11.004..
  • M. Ayán-Varela et al., “Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer,” ACS Appl Mater Interfaces, vol. 7, no. 19, pp. 10293–10307, Apr. 2015. DOI: 10.1021/acsami.5b00910.
  • Y. Arao and M. Kubouchi, “High-rate production of few-layer graphene by high-power probe sonication,” Carbon, vol. 95, pp. 802–808, Dec. 2015. DOI: 10.1016/j.carbon.2015.08.108..
  • D. W. Kang and H. S. Shin, “Control of size and physical properties of graphene oxide by changing the oxidation temperature,” Carbon Lett., vol. 13, no. 1, pp. 39–43, Dec 2012. DOI: 10.5714/CL.2012.13.1.039..
  • T. Y. Zhang and D. Zhang, “Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication,” Bull. Mater. Sci., vol. 34, no. 1, pp. 25–28, May 2011. DOI: 10.1007/s12034-011-0048-x..
  • J. Y. Ying, J. B. Benziger, and A. Navrotsky, “Structural evolution of colloidal silica gels to glass,” J Amer. Ceramic Soc., vol. 76, no. 10, pp. 2561–2570, Oct. 1993. DOI: 10.1111/j.1151-29161993.tb03982.x..
  • P. J. Rivero et al., “An antibacterial coating based on a polymer/sol–gel hybrid matrix loaded with silver nanoparticles,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–7, Apr. 2011. DOI: 10.1186/1556-276X-6-305..
  • S. S. Gajghate, S. Barathula, S. Das, B. B. Saha, and S. Bhaumik, “Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface,” J. Therm. Anal. Calorim., vol. 140, no. 3, pp. 1393–1411, Sep. 2020. DOI: 10.1007/s10973-019-087405..
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., vol. 1, no. 1, pp. 3–17, Jan. 1988. DOI: 10.1016/0894-1777(88)90043-X..
  • “ANSYS Fluent Theory Guide,” Version 13.0, 275 Technology Drive Canonsburg, PA 15317, USA: ANSYS, Inc., Nov. 2013.
  • I. L. Pioro, W. Rohsenow, and S. S. Doerffer, “Nucleate pool-boiling heat transfer. I: Review of parametric effects of boiling surface,” Int. J. Heat Mass Transf., vol. 47, no. 23, pp. 5033–5044, Nov. 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.06.019..
  • C. Suryanarayana and M. G. Norton, X-Ray Diffraction: A Practical Approach, 1st ed. Berlin, Germany: Springer, 1998.
  • W. B. Pearson, P. Villars, and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Compounds, vol. 2. Cleveland, OH, USA: ASM, 1985.
  • T. Oku, Solar Cells and Energy Materials. Berlin, Germany: GmbH & Co, 2016.
  • V. Resta et al., “Pulsed laser deposition of a dense and uniform Au nanoparticles layer for surface plasmon enhanced efficiency hybrid solar cells,” J. Nanopart. Res., vol. 15, no. 11, pp. 1–7, Nov. 2013. DOI: 10.1007/s11051-013-2017-3..
  • B. Andonovic, A. Ademi, A. Grozdanov, P. Paunović, and A. T. Dimitrov, “Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data,” Beilstein J. Nanotechnol., vol. 6, no. 1, pp. 2113–2122, Nov. 2015. DOI: 10.3762/bjnano.6.216.
  • B. Andonovic, A. Grozdanov, P. Paunović, and A. T. Dimitrov, “X-ray diffraction analysis on layers in graphene samples obtained by electrolysis in molten salts: A new perspective,” Micro Nano Lett., vol. 10, no. 12, pp. 683–685, Dec. 2015. DOI: 10.1049/mnl.2015.0325..
  • J. Amaro-Gahete et al., “A comparative study of particle size distribution of graphene nanosheets synthesized by an ultrasound-assisted method,” Nanomater, vol. 9, no. 2, pp. 152–167, Jan. 2019. DOI: 10.3390/nano9020152.
  • M. Simón, A. Benítez, A. Caballero, J. Morales, and O. Vargas, “Untreated natural graphite as a graphene source for high-performance Li-ion batteries,” Batteries, vol. 4, no. 1, pp. 13–21, Mar. 2018. DOI: 10.3390/batteries4010013.
  • X. Zhu, N. Zhao, Y. Luo, and J. Du, “Influence of graphene oxide with different degrees of oxidation on the conductivity of graphene/poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) composites,” Fuller Nanotu. Carbon Nanostruct., vol. 25, no. 11, pp. 652–660, Dec. 2017. DOI: 10.1080/1536383X.2017.1378644..
  • N. I. Park, S. B. Lee, S. M. Lee, and D. W. Chung, “Preparation and characterization of PEDOT/PSS hybrid with graphene derivative wrapped by water-soluble polymer,” Appl. Chem. Eng., vol. 25, no. 6, pp. 581–585, Dec. 2014. DOI: 10.14478/ace.2014.1087.
  • Y. Wu et al., “Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films,” Nano Res., vol. 3, no. 9, pp. 661–669, Sep. 2010. DOI: 10.1007/s12274-010-0027-3..
  • J. Kim, J. You, and E. Kim, “Flexible conductive polymer patterns from vapor polymerizable and photo-cross-linkable EDOT,” Macromol, vol. 43, no. 5, pp. 2322–2327, 2010. DOI: 10.1021/ma9025306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.