236
Views
2
CrossRef citations to date
0
Altmetric
Articles

Numerical Investigation of the Cryogenic Cavitating Flow Characteristics in Bi-Directional Cone Flowmeters: A Systematic Parameter Study

, , , , &

References

  • S. S. Kumar and T. K. Nandi, “Issues on the testing of small cryogenic recuperators and experimental studies on perforated plate heat exchangers,” Heat Transf. Eng., vol. 39, no. 9, pp. 794–805, 2018. DOI: 10.1080/01457632.2017.1341233.
  • B. B. Vasques and O. J. Haidn, “Estimation of errors in calculated liquid rocket injector performance using a miniature cryogenic test stand,” Aerospace Technol. Japan, vol. 16, no. 5, pp. 335–344, 2018. DOI: 10.2322/tastj335.
  • J. N. Liang, G. W. Liang and H. F. Liang, “Numerical simulation of the double-cones flow-meter on its expansibility factor,” AMR, vol. 301–303, pp. 847–852, Jul. 2011. DOI: 10.4028/www.scientific.net/AMR.301-303.847.
  • K. Borkar, A. Venugopal and S. V. Prabhu, “Study on the design and performance of a bi-directional cone flowmeter,” Flow Meas. Instrum., vol. 34, pp. 151–159, Oct. 2013. DOI: 10.1016/j.flowmeasinst.2013.09.005.
  • G. Z. Feng and S. Z. Sun, “Experimental research on pressure loss of an olivary flowmeter,” AMR, vol. 860–863, pp. 1559–1564, Dec. 2013. DOI: 10.4028/www.scientific.net/AMR.860-863.1559.
  • D. Xie, Y. Zhu, and S. Tao, “Flowrate measurement of gas/liquid two-phase flow base on the double-cone flowmeter,” International Instrumentation and Measurement Technology Conference, Binjiang, China, Jul. 2011, pp. 1–4. DOI: 10.1109/IMTC.2011.5944211.
  • Y. L. An, D. Xie, X. Peng, L. Xia, and W. Shuo, “Application of a double-cone flowmeter for parameters measurement of gas-liquid two-phase flow,” IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, Jul. 2016. DOI: 10.1109/I2MTC.2016.7520514.
  • J. Hord, “Cavitation in liquid cryogens,” Vol. II - Hydrofoil, NASA CR2156, 1973.
  • J. Hord, “Cavitation in liquid cryogens,” Vol. III - Ogive, NASA CR-2242, 1973.
  • K. Ohira, T. Nakayama and T. Nagai, “Cavitation flow instability of subcooled liquid nitrogen in converging-diverging nozzles,” Cryogenics, vol. 52, no. 1, pp. 35–44, Nov. 2012. DOI: 10.1016/j.cryogenics.2011.11.001.
  • H. Chang, X. Xie, Y. Zheng and S. Shu, “Numerical study on the cavitating flow in liquid hydrogen through elbow pipes with a simplified cavitation model,” Int. J. Hydrogen Energy, vol. 42, no. 29, pp. 18325–18332, Apr. 2017. DOI: 10.1016/j.ijhydene.2017.04.132.
  • S. Zhang, X. Li and Z. Zhu, “Numerical simulation of cryogenic cavitating flow by an extended transport-based cavitation model with thermal effects,” Cryogenics, vol. 92, pp. 98–104, Apr. 2018. DOI: 10.1016/j.cryogenics.2018.04.008.
  • G. Saritha and R. Banerjee, “Bubble dynamics of a pressure-driven cavitating flow in a micro-scale channel using a high density pseudo-potential Lattice Boltzmann method,” Heat Transf. Eng., vol. 41, no. 6–7, pp. 622–636, 2020. DOI: 10.1080/01457632.2018.1546964.
  • H. Z. Cao, H. B. Xu, N. Liang and Q. T. Chang, “Experiment investigation of R134a flow boiling process in microchannel with cavitation structure,” Heat Transf. Eng., vol. 32, no. 7–8, pp. 542–553, 2011. DOI: 10.1080/01457632.2010.506397.
  • N. Tani and T. Nagashima, “Cryogenic cavitating flow in 2D laval nozzle,” J. Therm. Sci., vol. 12, no. 2, pp. 157–161, 2003. DOI: 10.1007/s11630-003-0058-0.
  • F. Khatami, E. Van Der Weide and H. Hoeijmakers, “Multiphase thermodynamic tables for efficient numerical simulation of cavitating flows: A novel look-up approach toward efficient and accurate tables,” Heat Transf. Eng., vol. 36, no. 12, pp. 1065–1083, 2015. DOI: 10.1080/01457632.2015.981090.
  • H. Liu, H. Tian, H. Chen, T. Jin and K. Tang, “Numerical Study on performance of perforated plate applied to cryogenic fluid flowmeter,” JZUS-A, vol. 17, no. 3, pp. 230–239, Feb. 2016. DOI: 10.1631/jzus.A1500082.
  • T. Sun, Y. Wei, L. Zou, Y. Jiang, C. Xu and Z. Zong, “Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid,” Int. J. Multiph. Flow, vol. 111, pp. 82–100, Nov. 2019. DOI: 10.1016/j.ijmultiphaseflow.2018.11.014.
  • T. Chen, H. Chen, B. Huang, W. Liang, L. Xiang and G. Wang, “Thermal transition and its evaluation of liquid hydrogen cavitating flow in a wide range of free-stream conditions,” Int. J. Heat Mass Transf., vol. 127, pp. 1277–1289, Jul. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.096.
  • B. Biçer and A. Sou, “Application of the improved cavitation model to turbulent cavitating flow in fuel injector nozzle,” Appl. Math. Model, vol. 40, no. 7–8, pp. 4712–4726, Dec. 2016. DOI: 10.1016/j.apm.2015.11.049.
  • V. Yakhot and S. A. Orszag, “Renormalization group analysis of turbulence. I. Basic theory,” J. Sci. Comput., vol. 1, no. 1, pp. 3–51, May 1986. DOI: 10.1007/BF01061452.
  • P. J. Zwart, A. G. Gerber and T. Belamri, “A two-phase flow model for predicting cavitation dynamics,” Fifth International Conference on Multiphase Flow, Yokohama, Japan, Jan. 2004.
  • T. Goel, S. Thakur, R. T. Haftka, W. Shyy and J. Zhao, “Surrogate model-based strategy for cryogenic cavitation model validation and sensitivity evaluation,” Int. J. Numer. Meth. Fluids, vol. 58, no. 9, pp. 969–1007, Mar. 2008. DOI: 10.1002/fld.1779.
  • B. Huang, Q. Wu and G. Wang, “Numerical investigation of cavitating flow in liquid hydrogen,” Int. J. Hydrogen Energy, vol. 39, no. 4, pp. 1698–1709, Dec. 2014. DOI: 10.1016/j.ijhydene.2013.11.025.
  • T. Z. Sun, X. F. Ma, Y. J. Wei and C. Wang, “Computational modeling of cavitating flows in liquid nitrogen by an extended transport-based cavitation model,” Sci. China Technol. Sci., vol. 59, no. 2, pp. 337–346, Jan. 2016. DOI: 10.1007/s11431-015-5969-y.
  • A. K. Singhal, M. M. Athavale, H. Li and Y. Jiang, “Mathematical basis and validation of the full cavitation model,” ASME Fluids Eng., vol. 124, pp. 1–8, Sep. 2002. DOI: 10.1115/1.1486223.
  • E. Lemmon, M. Huber and M. McLinden, “NIST Standard Reference Database 23: Reference fluid thermodynamic and transport properties-REFPROP,” Version 9.1, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.