295
Views
9
CrossRef citations to date
0
Altmetric
Articles

Fabrication of Hydrophobic Coated Tubes for Boiling Heat Transfer Enhancement

ORCID Icon, &

References

  • I. Bang and J. Jeong, “Nanotechnology for advanced nuclear thermal-hydraulics and safety: Boiling and condensation,” Nucl. Eng. Technol., vol. 43, no. 3, pp. 217–242, Jun. 2011. DOI: 10.5516/NET.2011.43.3.217.
  • Y. Lu and S. Kandlikar, “Nanoscale surface modification techniques for pool boiling enhancement—a critical review and future directions,” Heat Transf. Eng., vol. 32, no. 10, pp. 827–842, May 2011. DOI: 10.1080/01457632.2011.548267.
  • S. Guo, et al., “Condensation and evaporation heat transfer characteristics in horizontal smooth, herringbone and enhanced surface EHT tubes,” Int. J. Heat Mass Transf., vol. 85, pp. 281–291, Jun. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.115.
  • N. Khan, K. Toh and D. Pinjala, “Boiling heat transfer enhancement using micro-machined porous channels for electronics cooling,” Heat Transf. Eng., vol. 29, no. 4, pp. 366–374, Jul. 2008. DOI: 10.1080/01457630701825481.
  • K. Chu, R. Enright and E. Wang, “Structured surfaces for enhanced pool boiling heat transfer,” Appl. Phys. Lett., vol. 100, no. 24, pp. 241603-1–241603-4, Jun. 2012. DOI: 10.1063/1.4724190.
  • G. Ribatski and J. Thome, “Nucleate boiling heat transfer of R134a on enhanced tubes,” Appl. Therm. Eng., vol. 26, no. 10, pp. 1018–1031, Jul. 2006. DOI: 10.1016/j.applthermaleng.2005.09.021.
  • E. Van Rooyen, J. Thome, “Pool boiling data and prediction method for enhanced boiling tubes with R-134a, R-236fa and R-1234ze (E),” Int. J. Refrigeration, vol. 36, no. 2, pp. 447–455, Mar. 2013. DOI: 10.1016/j.iandrefrig.2012.11.023.
  • D. Jung, H. Lee, D. Bae and J. Ha, “Nucleate boiling heat transfer coefficients of flammable refrigerants on various enhanced tubes,” Int. J. Refrigeration, vol. 28, no. 3, pp. 451–455, May 2005. DOI: 10.1016/j.ijrefrig.2004.07.024.
  • R. Tatara and P. Payvar, “Pool boiling of pure R134a from a single Turbo-BII-HP tube,” Int. J. Heat Mass Transf., vol. 43, no. 12, pp. 2233–2236, 2000. DOI: 10.1016/S0017-9310(99)00294-X.
  • A. Bergles, “Heat transfer enhancement – the encouragement and accommodation of high heat fluxes,” J. Heat Transf., vol. 119, no. 1, pp. 8–19, Feb. 1997. DOI: 10.1115/1.2824105.
  • N. Zubkov, “Multitool deformation and cutting in applying fins to heat-exchanger pipe,” Russ. Engin. Res., vol. 35, no. 11, pp. 859–863, Dec. 2015. DOI: 10.3103/S1068798X15110209.
  • A. Shchelchkov, I. Popov and N. Zubkov, “Boiling of a liquid on microstructured surfaces under free-convection conditions,” J. Eng. Phys. Thermophys., vol. 89, no. 5, pp. 1152–1160, Oct. 2016. DOI: 10.1007/s10891-016-1478-5.
  • O. Volodin, N. Pecherkin, A. Pavlenko and N. Zubkov, “Heat transfer and crisis phenomena at boiling of refrigerant films falling down the surfaces obtained by deformational cutting,” Interfac. Phenom. Heat Transf., vol. 5, no. 3, pp. 215–222, 2017. DOI: 10.1615/InterfacPhenomHeatTransfer.2018025507.
  • D. Min, et al., “2-D and 3-D modulated porous coatings for enhanced pool boiling,” Int. J. Heat Mass Transf., vol. 52, no. 11–12, pp. 2607–2613, May 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.12.018.
  • D. Deng, J. Feng, Q. Huang, Y. Tang and Y. Lian, “Pool boiling heat transfer of porous structures with reentrant cavities,” Int. J. Heat Mass Transf., vol. 99, pp. 556–568, Aug. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.015.
  • A. Surtaev, et al., “Heat transfer and crisis phenomena at pool boiling of liquid nitrogen on the surfaces with capillary-porous coatings,” Int. J. Heat Mass Transf., vol. 108, pp. 146–155, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.100.
  • A. A Surtaev, et al., “Structured capillary-porous coatings for enhancement of heat transfer at pool boiling,” Appl. Therm. Eng., vol. 133, pp. 532–542, Mar. 2018. DOI: 10.1016/j.applthermaleng.2018.01.051.
  • A. Dewangan, A. Kumar and R. Kumar, “Experimental study of nucleate pool boiling of R-134a and R-410A on a porous surface,” Heat Transf. Eng., vol. 40, no. 15, pp. 1249–1258, Apr 2019. DOI: 10.1080/01457632.2018.1460922.
  • M. El-Genk and A. Ali, “Enhanced nucleate boiling on copper micro-porous surfaces,” Int. J. Multiph. Flow, vol. 36, no. 10, pp. 780–792, Oct. 2010. DOI: 10.1016/j.ijmultiphaseflow.2010.06.003.
  • A. Gheitaghy, H. Saffari and G. Zhang, “Effect of nanostructured microporous surfaces on pool boiling augmentation,” Heat Transf. Eng., vol. 40, no. 9–10, pp. 762–771, Mar. 2019. DOI: 10.1080/01457632.2018.1442310.
  • J. Li, W. Fu, B. Zhang, G. Zhu and N. Miljkovic, “Ultrascalable three-tier hierarchical nanoengineered surfaces for optimized boiling,” ACS Nano, vol. 13, no. 12, pp. 14080–14093, Dec. 2019. DOI: 10.1021/acsnano.9b06501.
  • C. Zhang, L. Zhang, H. Xu, P. Li and B. Qian, “Performance of pool boiling with 3D grid structure manufactured by selective laser melting technique,” Int. J. Heat Mass Transf., vol. 128, pp. 570–580, Jan. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.021.
  • V. Zhukov, A. Pavlenko and V. Bessmeltsev, “Heat transfer at evaporation/boiling in the thin horizontal liquid layer on microstructured surfaces under low pressures,” J. Phys.: Conf. Ser., vol. 1369, no. 1, pp. 12007-1–12007-6, Aug. 2019. DOI: 10.1088/1742-6596/1369/1/012007.
  • M. Shojaeian and A. Kosar, “Pool boiling and flow boiling on micro-and nanostructured surfaces,” Exp. Therm. Fluid Sci., vol. 63, pp. 45–73, May 2015. DOI: 10.1016/j.expthermflusci.2014.12.016.
  • A. Surtaev, V. Serdyukov, and A. Pavlenko “Nanotechnologies for thermophysics: Heat transfer and crisis phenomena at boiling,” Nanotech, vol. 11, no. 11–12, pp. 696–715, Feb. 2016. DOI: 10.1134/S1995078016060197.
  • G. Liang and I. Mudawar, “Review of pool boiling enhancement by surface modification,” Int. J. Heat Mass Transf., vol. 128, pp. 892–933, Jan. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.026.
  • A. Mehralizadeh, S. Shabanian and G. Bakeri, “Effect of modified surfaces on bubble dynamics and pool boiling heat transfer enhancement: A review,” Therm. Sci. Eng. Prog., vol. 15, pp. 100451-1–100451-25, Mar. 2020. DOI: 10.1016/j.tsep.2019.100451.
  • T. Emery, A. Jaikumar, P. Raghupathi, I. Joshi and S. Kandlikar, “Dual enhancement in HTC and CHF for external tubular pool boiling–A mechanistic perspective and future directions,” Int. J. Heat Mass Transf., vol. 122, pp. 1053–1073, Jul. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.138.
  • A. Dedov, “A review of modern methods for enhancing nucleate boiling heat transfer,” Therm. Eng., vol. 66, no. 12, pp. 881–915, Dec. 2019. DOI: 10.1134/S0040601519120012.
  • M. Rahman, E. Olceroglu and M. McCarthy, “Role of wickability on the critical heat flux of structured superhydrophilic surfaces,” Langmuir, vol. 30, no. 37, pp. 11225–11234, Aug. 2014. DOI: 10.1021/la5030923.
  • A. Surtaev, V. Serdyukov and A. Safonov, “Enhancement of boiling heat transfer on hydrophobic fluoropolymer coatings,” Interfac. Phenom. Heat Transf., vol. 6, no. 3, pp. 269–276, 2018. DOI: 10.1615/InterfacPhenomHeatTransfer.2019030504.
  • M. Dharmendra, S. Suresh, C. S. Kumar and Q. Yang, “Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate,” Appl. Therm. Eng., vol. 99, pp. 61–71, Apr. 2016. DOI: 10.1134/10.1016/j.applthermaleng.2015.12.081.
  • A. Gupta, A. Jaikumar, S. Kandlikar, A. Rishi and A. Layman, “A multiscale morphological insight into graphene based coatings for pool boiling applications,” Heat Transf. Eng., vol. 39, no. 15, pp. 1331–1343, Sep. 2018. DOI: 10.1080/01457632.2017.1366228.
  • M. Zupančič, M. Steinbücher, P. Gregorčič and I. Golobič, “Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces,” Appl. Therm. Eng., vol. 91, pp. 288–297, Dec. 2015. DOI: 10.1016/j.applthermaleng.2015.08.026.
  • P. Zakšek, M. Zupančič, P. Gregorčič and I. Golobič, “Investigation of nucleate pool boiling of saturated pure liquids and ethanol-water mixtures on smooth and laser-textured surfaces,” Nanoscale Microscale Thermophys. Eng., vol. 24, no. 1, pp. 1–14, Nov. 2019. DOI: 10.1080/15567265.2019.1689590.
  • S. Kim, et al., “The role of surface energy in heterogeneous bubble growth on ideal surface,” Int. J. Heat Mass Transf., vol. 108, pp. 1901–1909, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.005.
  • H. O'Hanley, et al., “Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux,” Appl. Phys. Lett., vol. 103, no. 2, pp. 24102-1–24102-5, Jul. 2013. DOI: 10.1063/1.4813450.
  • S. Lee, et al., “Layer-by-layer carbon nanotube coatings for enhanced pool boiling heat transfer on metal surfaces,” Carbon, vol. 107, pp. 607–618, Oct. 2016. DOI: 10.1016/j.carbon.2016.06.039.
  • L. Cheng, G. Xia, Q. Li and J. Thome, “Fundamental issues, technology development, and challenges of boiling heat transfer, critical heat flux, and two-phase flow phenomena with nanofluids,” Heat Transf. Eng., vol. 40, no. 16, pp. 1301–1336, May 2019. DOI: 10.1080/01457632.2018.1470285.
  • P. Zhang and F. Lv, “A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications,” Energy, vol. 82, pp. 1068–1087, Mar. 2015. DOI: 10.1016/j.energy.2015.01.061.
  • D. Preston, D. Mafra, N. Miljkovic, J. Kong and E. Wang, “Scalable graphene coatings for enhanced condensation heat transfer,” Nano Lett., vol. 15, no. 5, pp. 2902–2909, Mar. 2015. DOI: 10.1021/nl504628s.
  • V. Sharma, D. Orejon, Y. Takata, V. Krishnan and S. Harish, “Gladiolus dalenii based bioinspired structured surface via soft lithography and its application in water vapor condensation and fog harvesting,” ACS Sustainable Chem. Eng., vol. 6, no. 5, pp. 6981–6993, Apr. 2018. critical heat fluxes ng.8b00815. DOI: 10.1021/acssu.
  • E. Teodori, et al., “Effect of extreme wetting scenarios on pool boiling conditions,” Appl. Therm. Eng., vol. 115, pp. 1424–1437, Mar. 2017. DOI: 10.1016/j.applthermaleng.2016.11.079.
  • H. Phan, N. Caney, P. Marty, S. Colasson and J. Gavillet, “Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism,” Int. J. Heat Mass Transf., vol. 52, no. 23–24, pp. 5459–5471, Nov. 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.06.032.
  • B. Bourdon, R. Rioboo, M. Marengo, E. Gosselin and J. De Coninck, “Influence of the wettability on the boiling onset,” Langmuir, vol. 28, no. 2, pp. 1618–1624, Dec. 2012. DOI: 10.1021/la203636a.
  • A. Betz, J. Jenkins, C. Kim and D. Attinger, “Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces,” Int. J. Heat Mass Transf., vol. 57, no. 2, pp. 733–741, Feb. 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.080.
  • Y. Lv, et al., “Heat transfer and fouling rate at boiling on superhydrophobic surface with TiO 2 nanotube-array structure,” J. Eng. Thermophys., vol. 28, no. 2, pp. 163–176, Apr. 2019. DOI: 10.1134/S1810232819020012.
  • T. Allred, J. Weibel and S. Garimella, “Enabling highly effective boiling from superhydrophobic surfaces,” Phys. Rev. Lett., vol. 120, no. 17, pp. 174501–174501, Apr. 2018. DOI: 10.1103/PhysRevLett.120.174501.
  • Y. Nam, J. Wu, G. Warrier and Y. Ju, “Experimental and numerical study of single bubble dynamics on a hydrophobic surface,” J. Heat Transf., vol. 131, no. 12, pp. 121001–121004, Dec. 2009. DOI: 10.1115/1.3216038.
  • Y. Li, K. Zhang, M. Lu and C. Duan, “Single bubble dynamics on superheated superhydrophobic surfaces,” Int. J. Heat Mass Transf., vol. 99, pp. 521–531, Aug. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.098.
  • W. Barthlott and C. Neinhuis, “Purity of the sacred lotus or escape from contamination in biological surfaces,” Planta, vol. 202, no. 1, pp. 1–8, Apr. 1997. DOI: 10.1007/s004250050096.
  • K. Lau, H. Lewis, S. Limb, M. Kwan and K. Gleason, “Hot-wire chemical vapor deposition (HWCVD) of fluorocarbon and organosilicon thin films,” Thin Solid Films, vol. 395, no. 1–2, pp. 288–291, Sep. 2001. DOI: 10.1016/S0040-6090(01)01287-1.
  • H. Yasuoka, et al., “Fabrication of PTFE thin films by dual catalytic chemical vapor deposition method,” Thin Solid Films, vol. 516, no. 5, pp. 687–690, Jan. 2008. DOI: 10.1016/j.tsf.2007.06.185.
  • A. Uvarov and S. Aleksandrov, “Specific features of chemical deposition of polytetrafluoroethylene films from hexafluoropropylene oxide,” Russ. J. Gen. Chem., vol. 83, no. 8, pp. 1607–1612, Sep. 2013. DOI: 10.1134/S1070363213080239.
  • A. Safonov, et al., “Deposition features and wettability behavior of fluoropolymer coatings from hexafluoropropylene oxide activated by NiCr wire,” Thin Solid Films, vol. 653, pp. 165–173, May 2018. DOI: 10.1016/j.tsf.2018.03.015.
  • T. Smausz, B. Hopp and N. Kresz, “Pulsed laser deposition of compact high adhesion polytetrafluoroethylene thin films,” J. Phys. D: Appl. Phys., vol. 35, no. 15, pp. 1859–1863, Jul. 2002. DOI: 10.1088/0022-3727/35/15/307.
  • A. Mukherjee and V. K. Dhir, “Study of lateral merger of vapor bubbles during nucleate pool boiling,” J. Heat Transf., vol. 126, no. 6, pp. 1023–1039, Dec. 2004. DOI: 10.1115/1.1834614.
  • A. Surtaev, V. Serdyukov, J. Zhou, A. Pavlenko and V. Tumanov, “An experimental study of vapor bubbles dynamics at water and ethanol pool boiling at low and high heat fluxes,” Int. J. Heat Mass Transf., vol. 126, pp. 297–311, June 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.001.
  • D. Yung, J. J. Lorenz and E. N. Ganic, “Vapor/liquid interaction and entrainment in falling film evaporators,” J. Heat Transf., vol. 102, no. 1, pp. 20–25, 1980. DOI: 10.1115/1.3244242.
  • E. R. Hosler and J. W. Westwater, “Film boiling on a horizontal plate,” ARS J., vol. 32, no. 4, pp. 553–558, 1962. DOI: 10.2514/8.6067.
  • S. Starinskiy, et al., “Transition from superhydrophilic to superhydrophobic of silicon wafer by a combination of laser treatment and fluoropolymer deposition,” J. Phys. D: Appl. Phys., vol. 51, no. 25, pp. 255307-1–255307-16, Jun. 2018. DOI: 10.1088/1361-6463/aac641.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.