152
Views
4
CrossRef citations to date
0
Altmetric
Articles

Analysis of Multiphase Heat Transfer of TA2/Q235B Clad Plate Subjected to Impinging Liquid Jet Cooling

, , , , &

References

  • B. Horacek, K. Kiger and J. Kim, “Single nozzle spray cooling heat transfer mechanisms,” Int. J. Heat Mass Transfer, vol. 48, no. 8, pp. 1425–1438, 2005. asstransfer.2004.10.026 DOI: 10.1016/j.ijheatm-.
  • J. Kim, “Spray cooling heat transfer: The state of the art,” Int. J. Heat Fluid Flow, vol. 28, no. 4, pp. 753–767, 2007. DOI: 10.1016/j.ijheatfluidflow.2006.09.003.
  • E. Silk, E. Golliher and R. P. Selvam, “Spray cooling heat transfer: Technology overview and assessment of future challenges for micro-gravity application,” Energy Convers. Manage., vol. 49, no. 3, pp. 453–468, 2008. enconm- an.2007.07.046 DOI: 10.1016/j.
  • W. Cheng, W. Zhang, H. Chen and L. Hu, “Spray cooling and flash evaporation cooling: The current development and application,” Renewable Sustainable Energy Rev., vol. 55, pp. 614–628, Mar. 2016. DOI: 10.1016/j.rser.2015.11.014.
  • P. Chandra Mishra, S. Kumar Nayak and M. Ukamanal, “Effect of impingement density and nozzle to target distance on spray cooling of steel plate—an experimental investigation,” Heat Transfer Eng., vol. 38, no. 13, pp. 1198–1208, 2017. DOI: 10.1080/01457632.2016.1239946.
  • P. Smakulski and S. Pietrowicz, “A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques,” Appl. Therm. Eng., vol. 104, pp. 636–646, Jul. 2016. 2016.05.096 DOI: 10.1016/j.applthermaleng.
  • S. Nayak and P. Mishra, “Thermal characteristics of air-water spray impingement cooling of hot metallic surface under controlled parametric conditions,” J. Therm. Sci., vol. 25, no. 3, pp. 266–272, 2016. DOI: 10.1007/s11630-016-0859-6.
  • J. Wendelstorf, K. Spitzer and R. Wendelstorf, “Spray water cooling heat transfer at high temperatures and liquid mass fluxes,” Int. J. Heat Mass Transfer, vol. 51, no. 19–20, pp. 4902–4910, 2008. 2 DOI: 10.1016/j.ijheatmasstransfer.2008.01.03.
  • X. Tan, B. Liu, X. Zhu and J. Zhang, “Experimental study of cooling with a mist/air impinging jet I,” J. Eng. Thermophys., vol. 34, no. 12, pp. 2328–2331, 2013.
  • P. E. Santangelo, M. A. Corticelli and P. Tartarini, “Experimental and numerical analysis of thermal interaction between two droplets in spray cooling of heated surfaces,” Heat Transfer Eng., vol. 39, no. 3, pp. 217–228, 2018. DOI: 10.1080/01457632.2017.1295737.
  • S. Yao and K. Choit, “Heat transfer experiments of mono-dispersed vertically impacting sprays,” Int. J. Multiphase Flow, vol. 13, no. 5, pp. 639–648, 1987. DOI: 10.1016/0301-9322(87)90041-3.
  • M. Panão and A. Moreira, “Heat transfer correlation for intermittent spray impingement: A dynamic approach,” Int. J. Therm. Sci., vol. 48, no. 10, pp. 1853–1862, 2009. ci.2009.02.018 DOI: 10.1016/j.ijthermals-.
  • S. Ravikumar, J. Jha, S. Mohapatra, A. Sinha, S. Pal and S. Chakraborty, “Experimental study of the effect of spray inclination on ultrafast cooling of a hot steel plate,” Heat Mass Transfer, vol. 49, no. 10, pp. 1509–1522, 2013. DOI: 10.1007/s00231-013-1190-3.
  • S. Mohapatra, S. Ravikumar, S. Pal and S. Chakraborty, “Ultra Fast cooling of a hot steel plate by using high mass flux air atomized spray,” Steel Res. Int., vol. 84, no. 3, pp. 229–236, 2013. DOI: 10.1002/srin.201200157.
  • M. Lamvik and B.-A. Iden, “Heat transfer coefficient by water jets impinging on a hot surface,” International Heat Transfer Conference Digital Library, Begel House Inc, 1982. DOI: 10.1615/IHTC7.1990.[10.1615/IHTC7.1990]
  • H. Wang, W. Yu and Q. Cai, “Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling,” J. Mater. Process. Technol., vol. 212, no. 9, pp. 1825–1831, 2012. DOI: 10.1016/j.jmatprotec.2012.04.008.
  • Z. Liu and J. Wang, “Study on film boiling heat transfer for water jet impinging on high temperature flat plate,” Int. J. Heat Mass Transfer, vol. 44, no. 13, pp. 2475–2481, 2001. DOI: 10.1016/S0017-9310(00)00281-7.
  • M. Kapitz and S. Aus der Wiesche, “Confined boiling heat transfer, two-phase flow patterns, and jet impingement in a hele-shaw cell,” Heat Transfer Eng., vol. 38, no. 3, pp. 290–302, 2017. DOI: 10.1080/01457632.2016.1189258.
  • P. Stark and U. Fritsching, “Simulation of the impinging liquid jet cooling process of a flat plate,” Int. J. Num. Meth. HFF, vol. 25, no. 1, pp. 153–170, 2015. DOI: 10.1108/HFF-04-2013-0151.
  • M. Hosain, R. Bel Fdhila and A. Daneryd, “Heat transfer by liquid jets impinging on a hot flat surface,” Appl. Energy, vol. 164, pp. 934–943, Feb. 2016. DOI: 10.1016/j.apenergy.2015.08.038.
  • A. Y. Tong, “A numerical study on the hydrodynamics and heat transfer of a circular liquid jet impinging onto a substrate,” Numer. Heat Transfer: Part A: Appl., vol. 44, no. 1, pp. 1–19, 2003. DOI: 10.1080/713838171.
  • A. M. Kuraan, S. I. Moldovan and K. Choo, “Heat transfer and hydrodynamics of free water jet impingement at low nozzle-to-plate spacings,” Int. J. Heat Mass Transfer, vol. 108, pp. 2211–2216, May 2017. nsfer.2017.01.084 DOI: 10.1016/j.ijheatmasstra-.
  • A. Ramezanpour, I. Mirzaee, D. Firth and H. Shirvani, “A numerical heat transfer study of slot jet impinging on an inclined plate,” Int. J. Num. Meth. HFF, vol. 17, no. 7, pp. 661–676, 2007. 5530710777949 DOI: 10.1108/0961.
  • U. S. Bhapkar, A. Srivastava and A. Agrawal, “Acoustic and heat transfer aspects of an inclined impinging synthetic jet,” Int. J. Therm. Sci., vol. 74, pp. 145–155, Dec. 2013. 2013.06.007 DOI: 10.1016/j.ijthermalsci.
  • E. A. Silk, J. Kim and K. Kiger, “Spray cooling of enhanced surfaces: Impact of structured surface geometry and spray axis inclination,” Int. J. Heat Mass Transfer, vol. 49, no. 25–26, pp. 4910–4920, 2006. 031 DOI: 10.1016/j.ijheatmasstransfer.2006.05.
  • A. Hauksson, D. Fraser, V. Prodanovic and I. Samarasekera, “Experimental study of boiling heat transfer during subcooled water jet impingement on flat steel surface,” Ironmaking Steelmaking, vol. 31, no. 1, pp. 51–56, 2004. DOI: 10.1179/030192304225011098.
  • G. Liang and I. Mudawar, “Review of spray cooling–Part 1: Single-phase and nucleate boiling regimes, and critical heat flux,” Int. J. Heat Mass Transfer, vol. 115, pp. 1174–1205, Dec. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.029.
  • I. Sarkar, S. Chakraborty, A. Ashok, I. Sengupta, S. K. Pal and S. Chakraborty, “Comparative study on different additives with a jet array on cooling of a hot steel surface,” Appl. Therm. Eng., vol. 137, pp. 154–163, Jun. 2018. DOI: 10.1016/j.applthermaleng.2018.03.081.
  • S. V. Ravikumar, J. M. Jha, I. Sarkar, S. K. Pal and S. Chakraborty, “Mixed-surfactant additives for enhancement of air-atomized spray cooling of a hot steel plate,” Exp. Therm. Fluid Sci., vol. 55, pp. 210–220, May 2014. flusci.2014.03.007 DOI: 10.1016/j.exptherm-.
  • R. H. Pereira, S. L. Braga and J. A. R. Parise, “Single phase cooling of large surfaces with square arrays of impinging water sprays,” Appl. Therm. Eng., vol. 36, pp. 161–170, Apr. 2012. DOI: 10.1016/j.applthermaleng.2011.12.033.
  • M. J. Rau and S. V. Garimella, “Local two-phase heat transfer from arrays of confined and submerged impinging jets,” Int. J. Heat Mass Transfer, vol. 67, pp. 487–498, Dec. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.041.
  • T. Shedd and A. Pautsch, “Spray impingement cooling with single-and multiple-nozzle arrays. Part II: Visualization and empirical models,” Int. J. Heat Mass Transfer, vol. 48, no. 15, pp. 3176–3184, 2005. 2005.02.013 DOI: 10.1016/j.ijheatmasstransfer.
  • K. Oliphant, B. Webb and M. McQuay, “An experimental comparison of liquid jet array and spray impingement cooling in the non-boiling regime,” Exp. Therm. Fluid Sci., vol. 18, no. 1, pp. 1–10, 1998. 10013-4 DOI: 10.1016/S0894-1777(98).
  • G. Hu and L. Zhang, “Experimental and numerical study on heat transfer with impinging circular jet on a convex hemispherical surface,” Heat Transfer Eng., vol. 28, no. 12, pp. 1008–1016, 2007. DOI: 10.1080/01457630701483638.
  • M. K. Sung and I. Mudawar, “Experimental and numerical investigation of single-phase heat transfer using a hybrid jet-impingement/micro-channel cooling scheme,” Int. J. Heat Mass Transfer, vol. 49, no. 3–4, pp. 682–694, 2006. ijheatmasstransfer.2005.08.021 DOI: 10.1016/j.
  • M. Modak, K. Garg and S. K. Sahu, “Stagnation region heat transfer of axisymmetric impinging jets on solid surfaces,” Chem. Eng. Technol., vol. 38, no. 12, pp. 2127–2136, 2015. DOI: 10.1002/ceat.201500070.
  • R. Thakrar, J. Murallidharan, and S. Walker, “An evaluation of the RPI model for the prediction of the wall heat flux partitioning in subcooled boiling flows,” Presented at the 22nd International Conference on Nuclear Engineering on American Society of Mechanical Engineers Digital Collection, Prague, Czech Republic, Jul. 7–11, 2014. DOI: 10.1115/ICONE22-30125.
  • G. Liu, et al., “Experimental research on heat transfer of aerosol nozzle for cooling thin strip after cast rolling,” Hot Work. Technol., vol. 47, no. 18, pp. 203–207, 2018. DOI: 10.14158/j.cnki.1001-3814.2018.18.053.
  • C. Ding, et al., “Experimental measurement of air impinging heat transfer coefficient based on 2-D transient inverse heat conduction method,” Energy Metall. Ind., vol. 36, no. 1, pp. 28–33, 2017. DOI: 10.3969/j.issn.1001-1617.2017.01.007.
  • H. Kim and S. Oh, “Evaluation of heat transfer coefficient during heat treatment by inverse analysis,” J. Mater. Process. Technol., vol. 112, no. 2–3, pp. 157–165, 2001. DOI: 10.1016/S0924-0136(00)00877-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.