200
Views
7
CrossRef citations to date
0
Altmetric
Articles

Three-Dimensional Numerical Analysis on Performance Enhancement of Micropolar Hybrid Nanofluid in Comparison with Simple Nanofluid

, , , &

References

  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” presented at the Proceedings of 1995 International Mechanical Engineering Congress and Exhibition, San Francisco, CA, Nov. 12–17, 1995. https://www.osti.gov/servlets/purl/196525.
  • D. Wen and Y. Ding, “Formulation of nanofluids for natural convective heat transfer applications,” Int. J. Heat Fluid Flow, vol. 26, no. 6, pp. 855–864, Dec. 2005. DOI: 10.1016/j.ijheatfluidflow.2005.10.005.
  • O. Abouali and A. Falahatpisheh, “Numerical investigation of natural convection of Al2O3 nanofluid in vertical annuli,” Heat Mass Transfer, vol. 46, no. 1, pp. 15–23, Sep. 2009. http://sci-hub.tw/10.1007/s00231-009-0540-7. DOI: 10.1007/s00231-009-0540-7.
  • R.-Y. Jou and S.-C. Tzeng, “Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures,” Int. Commun. Heat Mass Transfer, vol. 33, no. 6, pp. 727–736, Jul. 2006. DOI: 10.1016/j.icheatmasstransfer.2006.02.016.
  • E. Abu-Nada, Z. Masoud, H. F. Oztop, and A. Campo, “Effect of nanofluid variable properties on natural convection in enclosures,” Int. J. Therm. Sci., vol. 49, no. 3, pp. 479–491, Mar. 2010. DOI: 10.1016/j.ijthermalsci.2009.09.002.
  • L. Kolsi, A. A. A. A. Alrashed, K. Al-Salem, H. F. Oztop, and M. N. Borjini, “Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field,” Int. J. Heat Mass Transfer, vol. 111, pp. 1007–1018, Aug. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.069.
  • M. Bouhalleb and H. Abbassi, “Numerical investigation of heat transfer by CuO–water nanofluid in rectangular enclosures,” Heat Transfer Eng., vol. 37, no. 1, pp. 13–23, Jul. 2015. DOI: 10.1080/01457632.2015.1025003.
  • G. Wang, X. Meng, M. Zeng, H. Ozoe, and Q. W. Wang, “Natural convection heat transfer of copper–water nanofluid in a square cavity with time-periodic boundary temperature,” Heat Transfer Eng., vol. 35, no. 6–8, pp. 630–640, May 2014. DOI: 10.1080/01457632.2013.837684.
  • M. Hati, A. Raji, M. Hasnaoui, M. Naïmi, and M. E. Abdallaoui, “Optimal natural convection heat transfer improvement by combining periodic heating temperature, cavity inclination, and nanofluid,” Heat Transfer Eng., vol. 38, no. 10, pp. 931–947, Jul. 2017. DOI: 10.1080/01457632.2016.1212574.
  • M. Karami, M. A. Akhavan-Behabadi, and M. Fakoor-Pakdaman, “Heat transfer and pressure drop characteristics of nanofluid flows inside corrugated tubes,” Heat Transfer Eng., vol. 37, no. 1, pp. 106–114, Jan. 2016. DOI: 10.1080/01457632.2015.1042347.
  • G. Narendran, N. Gnanasekaran, and D. Arumuga Perumal, “Experimental investigation on heat spreader integrated microchannel using graphene oxide nanofluid,” Heat Transfer Eng., vol. 41, no. 14, pp. 1252–1274, 2020. DOI: 10.1080/01457632.2019.1637136.
  • L. Snoussi et al., “Natural convection heat transfer in a nanofluid filled U-shaped enclosures: Numerical investigations,” Heat Transfer Eng., vol. 39, no. 16, pp. 1450–1460, Oct. 2018. DOI: 10.1080/01457632.2017.1379343.
  • G. G. Momin, “Experimental investigation of mixed convection with water–Al2O3 & hybrid nanofluid in inclined tube for laminar flow,” Int. J. Sci. Technol. Res., vol. 2, no. 12, pp. 195–202, Dec. 2013.
  • S. Suresh, K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar, “Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties,” Colloids Surf. A: Physicochem. Eng. Asp., vol. 388, no. 1–3, pp. 41–48, Sep. 2011. DOI: 10.1016/j.colsurfa.2011.08.005.
  • M. Afrand, D. Toghraie, and B. Ruhani, “Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: An experimental study,” Exp. Therm. Fluid Sci., vol. 77, pp. 38–44, Oct. 2016. DOI: 10.1016/j.expthermflusci.2016.04.007.
  • A. S. Dalkılıç et al., “Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids,” Int. Commun. Heat Mass Transfer, vol. 97, pp. 30–38, Oct. 2018. DOI: 10.1016/j.icheatmasstransfer.2018.07.007.
  • A. S. Dalkılıç et al., “Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids,” Int. Commun. Heat Mass Transfer, vol. 99, pp. 18–25, Dec. 2018. DOI: 10.1016/j.icheatmasstransfer.2018.10.002.
  • B. Takabi and S. Salehi, “Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid,” Adv. Mech. Eng., vol. 6, pp. 1–16, Jan. 2014. DOI: 10.1155/2014/147059.
  • A. Moghadassi, E. Ghomi, and F. Parvizian, “A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer,” Int. J. Therm. Sci., vol. 92, pp. 50–57, Jun. 2015. DOI: 10.1016/j.ijthermalsci.2015.01.025.
  • T. Tayebi and A. J. Chamkha, “Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids,” Numer. Heat Transfer A: Appl., vol. 70, no. 10, pp. 1141–1156, Oct. 2016. DOI: 10.1080/10407782.2016.1230423.
  • T. Tayebi and A. J. Chamkha, “Natural convection enhancement in an eccentric horizontal cylindrical annulus using hybrid nanofluids,” Numer. Heat Transfer A: Appl., vol. 71, no. 11, pp. 1159–1173, Jun. 2017. DOI: 10.1080/10407782.2017.1337990.
  • S. S. U. Devi and S. P. A. Devi, “Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating,” Can. J. Phys., vol. 94, no. 5, pp. 490–496, May 2016. DOI: 10.1139/cjp-2015-0799.
  • T. Hayat and S. Nadeem, “Heat transfer enhancement with Ag–CuO/water hybrid nanofluid,” Results Phys., vol. 7, pp. 2317–2324, Jun. 2017. DOI: 10.1016/j.rinp.2017.06.034.
  • A. A. Minea, “Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches,” Int. J. Heat Mass Transfer, vol. 104, pp. 852–860, Jan. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.012.
  • Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid Flow, vol. 21, no. 1, pp. 58–64, Feb. 2000. DOI: 10.1016/S0142-727X(99)00067-3.
  • S. A. M. Mehryan, F. M. Kashkooli, M. Ghalambaz, and A. J. Chamkha, “Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity,” Adv. Powder Technol., vol. 28, no. 9, pp. 2295–2305, Sep. 2017. DOI: 10.1016/j.apt.2017.06.011.
  • S. A. M. Mehryan, M. A. Sheremet, M. Soltani, and M. Izadi, “Natural convection of magnetic hybrid nanofluid inside a double-porous medium using two-equation energy model,” J. Mol. Liq., vol. 277, pp. 959–970, Mar. 2019. DOI: 10.1016/j.molliq.2018.12.147.
  • S. Nadeem, N. Abbas, and A. U. Khan, “Characteristics of three dimensional stagnation point flow of hybrid nanofluid past a circular cylinder,” Results Phys., vol. 8, pp. 829–835, Mar. 2018. DOI: 10.1016/j.rinp.2018.01.024.
  • J. Sarkar, P. Ghosh, and A. Adil, “A review on hybrid nanofluids: Recent research, development and applications,” Renew. Sustain. Energy Rev., vol. 43, pp. 164–177, Mar. 2015. . DOI: 10.1016/j.rser.2014.11.023.
  • M. U. Sajid and H. M. Ali, “Thermal conductivity of hybrid nanofluids: A critical review,” Int. J. Heat Mass Transfer, vol. 126, pp. 211–234, Nov. 2018. . DOI: 10.1016/j.ijheatmasstransfer.2018.05.021.
  • A. Eringen, “Theory of micropolar fluids,” Indiana Univ. Math. J., vol. 16, no. 1, pp. 1–18, 1966. DOI: 10.1512/iumj.1967.16.16001.
  • T. Ariman, M. A. Turk, and N. D. Sylvester, “Applications of microcontinuum fluid mechanics,” Int. J. Eng. Sci., vol. 12, no. 4, pp. 273–293, Apr. 1974. . DOI: 10.1016/0020-7225(74)90059-7.[Mismatch
  • G. Lukaszewicz, “Micropolar fluids: Theory and applications. 1999. 252 pp. ISBN 3 7643 4008 8. DM 14,” J. Fluid Mech., vol. 401, pp. 378–381, Dec. 1999. 10.1017/s0022112099236889.
  • O. Aydın and I. Pop, “Natural convection in a differentially heated enclosure filled with a micropolar fluid,” Int. J. Therm. Sci., vol. 46, no. 10, pp. 963–969, Oct. 2007. DOI: 10.1016/j.ijthermalsci.2006.11.018.
  • M. Zadravec, M. Hriberšek, and L. Škerget, “Natural convection of micropolar fluid in an enclosure with boundary element method,” Eng. Anal. Bound. Elem., vol. 33, no. 4, pp. 485–492, Apr. 2009. DOI: 10.1016/j.enganabound.2008.08.013.
  • M. Saleem, S. Asghar, and M. A. Hossain, “Natural convection flow of micropolar fluid in a rectangular cavity heated from below with cold sidewalls,” Math. Comp. Model., vol. 54, no. 1–2, pp. 508–518, Jul. 2011. DOI: 10.1016/j.mcm.2011.02.041.
  • S. K. Jena, L. K. Malla, S. K. Mahapatra, and A. J. Chamkha, “Transient buoyancy-opposed double diffusive convection of micropolar fluids in a square enclosure,” Int. J. Heat Mass Transfer, vol. 81, pp. 681–694, Feb. 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.030.
  • R. S. Agarwal, R. Bhargava, and A. V. S. Balaji, “Finite element solution of nonsteady three-dimensional micropolar fluid flow at a stagnation-point,” Int. J. Eng. Sci., vol. 28, no. 8, pp. 851–857, Jan. 1990. DOI: 10.1016/0020-7225(90)90030-M.[Mismatch
  • H. S. Takhar, R. S. Agarwal, R. Bhargava, and S. Jain, “Mixed convective non-steady 3-dimensional micropolar fluid flow at a stagnation point,” Heat Mass Transfer, vol. 33, no. 5–6, pp. 443–448, Apr. 1998. DOI: 10.1007/s002310050213.
  • A. J. Chamkha, M. Jaradat, and I. Pop, “Three-dimensional micropolar flow due to a stretching flat surface,” Int. J. Fluid Mech. Res., vol. 30, no. 4, pp. 357–366, 2003. DOI: 10.1615/InterJFluidMechRes.v30.i4.10.
  • A. Abidi and M. N. Borjini, “Effects of microstructure on three-dimensional double-diffusive natural convection flow of micropolar fluid,” Heat Transfer Eng., vol. 41, no. 4, pp. 361–376, 2020. DOI: 10.1080/01457632.2018.1540463.
  • G. C. Bourantas and V. C. Loukopoulos, “Modeling the natural convective flow of micropolar nanofluids,” Int. J. Heat Mass Transfer, vol. 68, pp. 35–41, Jan. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.09.006.
  • N. Putra, W. Roetzel, and S. K. Das, “Natural convection of nano-fluids,” Heat Mass Transfer, vol. 39, no. 8–9, pp. 775–784, Sep. 2003. DOI: 10.1007/s00231-002-0382-z.
  • H. Hashemi, Z. Namazian, and S. A. M. Mehryan, “Cu-water micropolar nanofluid natural convection within a porous enclosure with heat generation,” J. Mol. Liq., vol. 236, pp. 48–60, Jun. 2017. DOI: 10.1016/j.molliq.2017.04.001.
  • A. Hussanan, M. Z. Salleh, I. Khan, and S. Shafie, “Convection heat transfer in micropolar nanofluids with oxide nanoparticles in water, kerosene and engine oil,” J. Mol. Liq., vol. 229, pp. 482–488, Mar. 2017. DOI: 10.1016/j.molliq.2016.12.040.
  • G. C. Bourantas and V. C. Loukopoulos, “MHD natural-convection flow in an inclined square enclosure filled with a micropolar-nanofluid,” Int. J. Heat Mass Transfer, vol. 79, pp. 930–944, Dec. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.075.
  • M. Izadi, S. A. M. Mehryan, and M. A. Sheremet, “Natural convection of CuO-water micropolar nanofluids inside a porous enclosure using local thermal non-equilibrium condition,” J. Taiwan Inst. Chem. Eng., vol. 88, pp. 89–103, Jul. 2018. DOI: 10.1016/j.jtice.2018.04.019.
  • A. Abidi, Z. Raizah, and J. Madiouli, “Magnetic field effect on the double diffusive natural convection in three-dimensional cavity filled with micropolar nanofluid,” Appl. Sci., vol. 8, no. 12, pp. 2342–2367, Nov. 2018. DOI: 10.3390/app8122342.
  • M. Mollamahdi, M. Abbaszadeh, and G. A. Sheikhzadeh, “Flow field and heat transfer in a channel with a permeable wall filled with Al2O3-Cu/water micropolar hybrid nanofluid, effects of chemical reaction and magnetic field,” J. Heat Mass Transfer Res., vol. 3, pp. 101–114, 2016. https://dx.doi.org/10.22075/jhmtr.2016.447. DOI: 10.24200/sci.2017.4250.
  • G. S. Guram and A. C. Smith, “Stagnation flows of micropolar fluids with strong and weak interactions,” Comp. Math. Appl., vol. 6, no. 2, pp. 213–233, 1980. DOI: 10.1016/0898-1221(80)90030-9.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transfer, vol. 11, no. 2, pp. 151–170, Apr. 1998. DOI: 10.1080/08916159808946559.
  • J. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed. Cambridge: Oxford University Press, 1904.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–571, Apr. 1952. DOI: 10.1063/1.1700493.
  • I. Sezai and A. A. Mohamad, “Double diffusive convection in a cubic enclosure with opposing temperature and concentration gradients,” Phys. Fluids, vol. 12, no. 9, pp. 2210–2223, Sep. 2000. DOI: 10.1063/1.1286422.
  • A. Abidi, L. Kolsi, M. N. Borjini, and H. B. Aissia, “Effect of radiative heat transfer on three-dimensional double diffusive natural convection,” Numer. Heat Transfert A: Appl., vol. 60, no. 9, pp. 785–809, Nov. 2011. DOI: 10.1080/10407782.2011.627797.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.