228
Views
3
CrossRef citations to date
0
Altmetric
Articles

Simultaneous Optimization of Geometric and Nanofluids Parameters in a Rectangular Microchannel Heat Sink

, &

References

  • R. A. Taylor, et al., “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys., vol. 113, no. 1, pp. 011301, 2013. DOI: 10.1063/1.4754271.
  • K. V. Wong and O. Leon, “Applications of nanofluids: current and future,” Adv. Mech. Eng., vol. 2010, no. 519659, pp. 11, 2010. DOI: 10.1155/2010/519659.
  • D. S. Steinberg, Cooling Techniques for Electronic Equipment. New York, NY: John Wiley & Sons, 1980.
  • J. F. Tullius, R. Vajtai and Y. Bayazitoglu, “A review of cooling in Microchannels,” Heat Trans. Eng., vol. 32, no. 7–8, pp. 527–541, 2011. DOI: 10.1080/01457632.2010.506390.
  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett., vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1109/EDL.1981.25367.
  • T. D. B. Tuckerman, “Heat transfer micro-structures for integrated circuits,” Ph.D. dissertation, Dept. Electric. Eng., Stanford University, Stanford, CA, 1984.
  • N. Goldberg, “Narrow channel forced air heat sink,” IEEE Trans. Comp. Hybrids Manufact. Technol., vol. 7, no. 1, pp. 154–159, 1984. DOI: 10.1109/TCHMT.1984.1136326.
  • R. J. Phillips, Microchannel Heat Sinks. Lexington, MA: Lincoln Lab., Massachusetts Institute of Technology, Rep. AD-A-203492/4/XAB; JA-6118, 1988.
  • R. J. Phillips, “Forced-convection, liquid-cooled micro channel heat sinks,” M.S. thesis, Dep. Mech. Eng., Massachusetts Institute of Technology, Cambridge, MA, 1987.
  • R. W. Knight, D. J. Hall, J. S. Goodling and R. C. Jaeger, “Heat sink optimization with application to microchannels,” IEEE Trans. Comp. Hybrids Manufact. Technol., vol. 15, no. 5, pp. 832–842, 1992. DOI: 10.1109/33.180049.
  • W. Zhimin and C. K. Fah, “The optimum thermal design of microchannel heat sinks,” Presented at 1st Electron. Packaging Technol. Conf., Singapore, Oct. 10, 1997. DOI: 10.1109/EPTC.1997.723898.
  • J. H. Ryu, D. H. Choi and S. J. Kim, “Numerical optimization of the thermal performance of a microchannel heat sink,” Int. J. Heat Mass Trans., vol. 45, no. 13, pp. 2823–2827, 2002. DOI: 10.1016/S0017-9310(02)00006-6.
  • X. Wei and Y. Joshi, “Optimization study of stacked micro channel heat sinks for microelectronic cooling,” IEEE Trans. Comp. Pack. Tech., vol. 26, no. 1, pp. 55–61, 2003. DOI: 10.1109/TCAPT.2003.811473.
  • S. J. Kim, “Methods for thermal optimization of microchannel heat sinks,” Heat Trans. Eng., vol. 25, no. 1, pp. 37–49, 2004. DOI: 10.1080/01457630490248359.
  • D. Liu and S. V. Garimella, “Analysis and optimization of the thermal performance of microchannel heat sinks,” Int. J. Num. Meth. HFF, vol. 15, no. 1, pp. 7–26, 2005. DOI: 10.1108/09615530510571921.
  • P. S. Lee, S. K. Chou and Y. J. Lee, “Optimization of the thermal performance of microchannel heat sinks using thermally developing Nusselt number correlation,” Presented at 10th Electron. Packaging Technol. Conf., Singapore, Dec. 9–12, 2008. DOI: 10.1109/EPTC.2008.4763490.
  • R. Chein and G. Huang, “Analysis of microchannel heat sink performance using nanofluids,” Appl. Therm. Eng., vol. 25, no. 17–18, pp. 3104–3114, 2005. DOI: 10.1016/j.applthermaleng.2005.03.008.
  • W. A. Khan, J. R. Culham and M. M. Yovanovich, “Optimization of microchannel heat sinks using entropy generation minimization method,” IEEE Trans. Comp. Packag. Technol., vol. 32, no. 2, pp. 243–251, 2009. DOI: 10.1109/TCAPT.2009.2022586.
  • J. Li and G. P. Peterson, “3-Dimensional numerical optimization of silicon based high performance parallel microchannel heat sink with liquid flow,” Int. J. Heat Mass Trans., vol. 50, no. 15–16, pp. 2895–2904, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.01.019.
  • A. Husain and K. Y. Kim, “Optimization of a microchannel heat sink with temperature dependent fluid properties,” Appl. Therm. Eng., vol. 28, no. 8–9, pp. 1101–1107, 2008. DOI: 10.1016/j.applthermaleng12.001.
  • A. Husain and K. Y. Kim, “Multiobjective optimization of a microchannel heat sink using evolutionary algorithm,” J. Heat Trans., vol. 130, no. 11, pp. 1–3, 2008. DOI: 10.1115/1.2969261.
  • A. Husain and K. Y. Kim, “Enhanced multi objective optimization of a microchannel heat sink through evolutionary algorithm coupled with multiple surrogate models,” Appl. Therm. Eng., vol. 30, no. 13, pp. 1683–1691, 2010. DOI: 10.1016/j.applthermaleng.2010.03.027.
  • L. Biswal, S. Chakraborty and S. K. Som, “Design and optimization of single-phase liquid cooled microchannel heat sink,” IEEE Trans. Comp. Packag. Technol., vol. 32, no. 4, pp. 876–886, 2009. DOI: 10.1109/TCAPT.2009.2025598.
  • S. Ndao, Y. Peles and M. K. Jensen, “Multi-objective thermal design optimization and comparative analysis of electronics cooling technologies,” Int. J. Heat Mass Trans., vol. 52, no. 19–20, pp. 4317–4326, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.03.069.
  • T. Bello-Ochende, J. P. Meyer and F. U. Ighalo, “Combined numerical optimization and constructal theory for the design of microchannel heat sinks,” Num. Heat Trans. Part A Appl., vol. 58, no. 11, pp. 882–899, 2010. DOI: 10.1080/10407782.2010.529036.
  • Z. H. Wang, et al., “Multi- parameters optimization for microchannel heat sink using inverse problem method,” Int. J. Heat Mass Trans., vol. 54, no. 13–14, pp. 2811–2819, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.01.029.
  • G. Türkakar and T. Okutucu-Özyurt, “Dimensional optimization of microchannel heat sinks with multiple heat sources,” Int. J. Therm. Sci., vol. 62, pp. 85–92, 2012. DOI: 10.1016/j.ijthermalsci.2011.12.015.
  • T. C. Hung and W. M. Yan, “Optimization of a microchannel heat Sink with varying channel heights and widths,” Num. Heat Trans. Part A Appl., vol. 62, no. 9, pp. 722–741, 2012. DOI: 10.1080/10407782.2012.709437.
  • T. H. Tsai and R. Chein, “Simple model for predicting microchannel heat sink performance and optimization,” Heat Mass Transfer, vol. 48, no. 5, pp. 789–798, 2012. DOI: 10.1007/s00231-011-0933-2.
  • X. D. Wang, B. An, L. Lin and D. J. Lee, “Inverse geometric optimization for geometry of nanofluid-cooled microchannel heat sink,” Appl. Therm. Eng., vol. 55, no. 1–2, pp. 87–94, 2013. DOI: 10.1016/j.applthermaleng.2013.03.010.
  • M. R. Salimpour, M. Sharifhasan and E. Shirani, “Constructal optimization of microchannel heat sinks with noncircular cross sections,” Heat Trans. Eng., vol. 34, no. 10, pp. 863–874, 2013. DOI: 10.1080/01457632.2012.746552.
  • M. Mital, “Semi-analytical investigation of electronics cooling using developing nanofluid flow in rectangular microchannels,” Appl. Therm. Eng., vol. 52, no. 2, pp. 321–327, 2013. DOI: 10.1016/j.applthermaleng.2012.12.020.
  • W. A. Khan, M. B. Kadri and Q. Ali, “Optimization of microchannel heat sinks using genetic algorithm,” Heat Trans. Eng., vol. 34, no. 4, pp. 279–287, 2013. DOI: 10.1080/01457632.2013.694758.
  • S. Halelfadl, et al., “Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid,” Appl. Therm. Eng., vol. 62, no. 2, pp. 492–499, 2014. DOI: 10.1016/j.applthermaleng.2013.08.005.
  • A. A. Khan, S. M. Kim and K. Y. Kim, “Multi-objective optimization of an inverse trapezoidal-shaped microchannel,” Heat Trans. Eng., vol. 37, no. 6, pp. 571–580, 2016. DOI: 10.1080/01457632.2015.1060772.
  • D. D. Ma, G. D. Xia, Y. T. Jia, Y. F. Li and J. Wang, “Multi-parameter optimization for micro-channel heat sink under different constraint conditions,” Appl. Therm. Eng., vol. 120, pp. 247–256, 2017. DOI: 10.1016/j.applthermaleng.2017.03.123.
  • S. R. Reddy, et al., “Multi-objective optimization of micro pin-fin arrays for cooling of high heat flux electronics with a hot spot,” Heat Trans. Eng., vol. 38, no. 14–15, pp. 1235–1246, 2017. DOI: 10.1080/01457632.2016.1242953.
  • X. Zhang and Y. Jaluria, “Optimization of microchannel-based cooling systems,” Num. Heat Trans. Part A Appl., vol. 74, no. 3, pp. 1053–1067, 2018. DOI: 10.1080/10407782.2018.1513285.
  • T. Coşkun and E. Çetkin, “Heat transfer enhancement in a microchannel heat sink: nanofluids and/or micro pin fins,” Heat Trans. Eng., vol. 41, no. 21, pp. 1818–1828, 2020. DOI: 10.1080/01457632.2019.1670467.
  • F. Li, W. Zhu and H. He, “Numerical optimization on microchannel flow and heat transfer performance based on field synergy principle,” Int. J. Heat Mass Trans., vol. 130, pp. 375–385, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.112.
  • Y. Ge, S. Wang, Z. Liu and W. Liu, “Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method,” Appl. Therm. Eng., vol. 148, pp. 120–128, 2019. DOI: 10.1016/j.applthermaleng.2018.11.038.
  • A. Yildizeli and S. Cadirci, “Multi objective optimization of a micro-channel heat sink through genetic algorithm,” Int. J. Heat Mass Trans., vol. 146, no. 118847, pp. 13, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118847.
  • M. Meyer, M. Mehrabi and J. P. Meyer, “Modeling and multi-objective optimization of heat transfer characteristics and pressure drop of nanofluids in microtubes,” Heat Trans. Eng., vol. 42, no. 21, pp. 1811–1826, 2021. DOI: 10.1080/01457632.2020.1826740.
  • M. Dehghan, et al., “Pumping power and heat transfer rate of converging microchannel heat sinks: errors associated with the temperature dependency of nanofluids,” J. Therm. Anal. Calorim., vol. 140, no. 3, pp. 1267–1275, 2020. DOI: 10.1007/s10973-019-09020-y.
  • J. Lee and I. Mudawar, “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels,” Int. J. Heat Mass Trans., vol. 50, no. 3–4, pp. 452–463, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.08.001.
  • M. I. Hasan, et al., “Investigation of counterflow microchannel heat exchanger with hybrid nanoparticles and PCM suspension as a coolant,” Math. Prob. Eng., vol. 2021, no. 6687064, pp. 1–12, 2021. DOI: 10.1155/2021/6687064.
  • AZO Materials., Silica - Silicon Dioxide (SiO2). Manchester: AZoNetwork UK Ltd. Available: https://www.azom.com/properties.aspx?ArticleID=1114. Accessed: Dec. 01, 2001.
  • N. Saifuddin, A. Z. Raziah and A. R. Junizah, “Carbon nanotubes: a review on structure and their interaction with proteins,” J. Chem., vol. 2013, no. 676815, pp. 18, 2013. DOI: 10.1155/2013/676815.
  • M. E. Steinke and S. G. Kandlikar, “Single-phase liquid friction factors in microchannels,” Int. J. Therm. Sci., vol. 45, no. 11, pp. 1073–1083, 2006. DOI: 10.1016/j.ijthermalsci.2006.01.016.
  • R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts. New York, NY: Academic Press, 1978.
  • P. Lee and S. V. Garimella, “Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios,” Int. J. Heat Mass Trans., vol. 49nos., no. 17–18, pp. 3060–3067, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.02.011.
  • M. Corcione, “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids,” Energy Conver. Manag., vol. 52, no. 1, pp. 789–793, 2011. DOI: 10.1016/j.enconman.2010.06.072.
  • H. E. Patel, T. Sundararajan and S. K. Das, “An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids,” J. Nanopart. Res., vol. 12, no. 3, pp. 1015–1031, 2010. DOI: 10.1007/s11051-009-9658-2.
  • Y. Xuan, Q. Li and W. Hu, “Aggregation structure and thermal conductivity of nanofluids,” AIChE J., vol. 49, no. 4, pp. 1038–1043, 2003. DOI: 10.1002/aic.690490420.
  • H. E. Patel, K. B. Anoop, T. Sundararajan and S. K. Das, “Model for thermal conductivity of CNT-nanofluids,” Bull. Mater. Sci., vol. 31, no. 3, pp. 387–390, 2008. DOI: 10.1007/s12034-008-0060-y.
  • R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, 2nd ed. New York, NY: John Wiley and Sons, 2004.
  • Genetic Algorithm and Direct Search Toolbox User’s Guide, Version 2.0 (Release 13SP1+). Natick, MA: The MathWorks Inc., 2004.
  • P. S. Lee, S. V. Garimella and D. Liu, “Investigation of heat transfer in rectangular microchannels,” Int. J. Heat Mass Transf., vol. 48, no. 9, pp. 1688–1704, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.11.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.