230
Views
3
CrossRef citations to date
0
Altmetric
Articles

A Simple Solution for Heat Transfer in a Triple Tube Heat Exchanger

, , ORCID Icon, , &

References

  • V. M. Behera, D. H. Das and A. Nayak, “Numerical analysis of triple tube heat exchanger using ansys,” Int. J. Sci. Eng. Res., vol. 5, no. 11, pp. 1226–1231, Nov. 2014.
  • M. K. Singh and P. K. Jain, “Performance analysis of triple concentric tube heat exchanger with ribs,” Int. J. Res. Sci. Innov., vol. 5, no. 8, pp. 106–109, Aug. 2018.
  • C. A. Zuritz, “On the design of triple concentric-tube heat exchangers,” J. Food Process Eng., vol. 12, no. 2, pp. 113–130, 1990. DOI: 10.1111/j.1745-4530.1990.tb00045.x.
  • A. Ünal, “Theoretical analysis of triple concentric-tube heat exchangers – Part 1: mathematical modelling,” Int. Comm. Heat Mass Transf., vol. 25, no. 7, pp. 949–958, 1998. DOI: 10.1016/S0735-1933(98)00086-4.
  • A. Ünal, “Theoretical analysis of triple concentric-tube heat exchangers – Part 2: Case Studies,” Int. Comm. Heat Mass Transf., vol. 28, no. 2, pp. 243–256, 2001. DOI: 10.1016/S0735-1933(01)00231-7.
  • E. Batmaz and K. Sandeep, “Overall heat transfer coefficients and axial temperature distribution in a triple tube heat exchanger,” J Food Process Engineering, vol. 31, no. 2, pp. 260–279, 2008. DOI: 10.1111/j.1745-4530.2007.00154.x.
  • M. Pancholi and B. Virani, “Experimental Analysis of Triple Tube Heat Exchanger,” J. Res., vol. 3, no. 3, pp. 18–20, May 2017.
  • H. S. Ferreira, “Métodos matemáticos em modelagem e simulação do craqueamento térmico do 1,2-dicloroetano,” Ph.D. thesis. UNICAMP, Campinas, SP, 2003.
  • O. García-Valladares, “Numerical simulation of triple concentric-tube heat exhcangers,” Int. J. Therm. Sci., vol. 43, no. 10, pp. 979–991, Oct. 2004. DOI: 10.1016/j.ijthermalsci.2004.02.006.
  • G. A. Quadir, I. A. Badruddin and N. J. Salman Ahmed, “Numerical investigation of the performance of a triple concentric pipe heat exchanger,” Int. J. Heat Mass Transf., vol. 75, pp. 165–172, Aug. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.042.
  • A. Al-Abidi, S. Mat, K. Sopian, Y. Sulaiman and A. Mohammad, “Heat Transfer Enhancement for PCM Thermal Energy Storage in Triplex Tube Heat Exchanger,” Heat Transf. Eng., vol. 37, no. 7-8, pp. 705–712, Nov. 2016. DOI: 10.1080/01457632.2015.1067090.
  • A. Gomaa, M. A. Halim and A. M. Elsaid, “Experimental and numerical investigations of a triple concentric-tube heat exchanger,” Appl. Therm. Eng., vol. 99, pp. 1303–1315, Apr. 2016. DOI: 10.1016/j.applthermaleng.2015.12.053.
  • V. Giovannoni, R. N. Sharma and R. R. Raine, “Numerical prediction of thermal performances in a concentric triple tube heat exchanger,” Int. J. Therm. Sci., vol. 120, pp. 86–105, Oct. 2017. DOI: 10.1016/j.ijthermalsci.2017.06.003.
  • P. Peigné, C. Inard and L. Druette, “Ventilation heat recovery from wood-burning domestic fuels - a theoretical analysis based on triple concentric tube heat exchanger,” Energies, vol. 6, no. 1, pp. 351–373, Jan. 2013. DOI: 10.3390/en6010351.
  • T. M. Ghiwala and V. K. Matawala, “Sizing of triple concentric pipe heat exchanger,” Int. J. Eng. Dev. Res, vol. 2, no. 2, pp. 1683–1692, June 2014.
  • G. V. Wafelkar and L. V. Kamble, “Experimental performance analysis of triple tube heat exchanger with dimple tubing,” Int. J. Adv. Sci. Res., vol. 6, no. 4, pp. 810–816, Apr. 2017.
  • P. M. Linge, B. Korane and V. N. Kapatkar, “Performance study of triple concentric pipe heat exchanger,” Int. Eng. Res. J., MITCOE Issue, vol. 2016, pp. 629–634, Jun. 2016. https://www.ierjournal.org/pupload/mit/HP2-13.pdf.
  • S. Rădulescu, L. I. Negoiţă and I. Onuţu, “Analysis of the heat transfer in double and triple concentric tube heat exchangers,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 147, no. 1, pp. 012148, Jun. 2016. DOI: 10.1088/1757-899X/147/1/01214.
  • A. Ünal, “Effectiveness-NTU relations for triple concentric-tube heat exchangers,” Int. Comm. Heat Mass Transf., vol. 30, no. 2, pp. 261–273, Mar. 2003. DOI: 10.1016/S0735-1933(03)00037-X.
  • E. Batmaz and K. P. Sandeep, “Calculation of overall heat transfer coefficients in a triple tube heat exchanger,” Heat Mass Transf., vol. 1, no. 1, pp. 1–279, Jan. 2004. DOI: 10.1007/s00231-004-0546-0.
  • V. Tuyen, N. V. Hap and N. M. Phu, “Thermal-hydraulic characteristics and optimization of a liquid-to-suction triple-tube heat exchanger,” Case Stud. Therm. Eng, vol. 19, pp. 100635, Mar. 2020. DOI: 10.1016/j.csite.2020.100635.
  • P. C. M. Kumar and V. Hariprasath, “A review on triple tube heat exchangers,” Mater. Today Proc., vol. 21, no. 1, pp. 584–587, 2020. DOI: 10.1016/j.matpr.2019.06.719.
  • J. R. Welty, G. L. Rorrer, C. E. Wicks and R. E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, 5th ed. Hoboken, NJ: Wiley, 2008,
  • J. Kern and J. W. Hammings, “On the analogy between the calorimeter problem and some granulate-fluid exchange processes,” J. Heat Mass Transf., vol. 100, no. 2, pp. 319–323, May 1978. DOI: 10.1115/1.3450802.
  • J. J. Saastamoinen, “Heat exchange between two coupled moving beds by fluid flow,” Int. J. Heat Mass Transf., vol. 47, no. 6–7, pp. 1535–1547, Mar. 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.10.011.
  • S. L. Bertoli, J. A. B. Valle, A. G. Gerent, Jr., and J. Almeida, “Heat transfer at pneumatic particle transport – Limit solutions,” Powder Technol, vol. 232, pp. 64–77, Dec. 2012. DOI: 10.1016/j.powtec.2012.07.050.
  • W. D. Munro and N. R. Amundson, “Solid-Fluid Heat Exchange in Moving Beds,” Ind. Eng. Chem., vol. 42, no. 8, pp. 1481–1488, 1950. DOI: 10.1021/ie50488a014.
  • S. L. Bertoli, et al., “Lumped parameter analysis criteria for heat transfer in a co-current moving bed with adiabatic walls,” Powder Technol., vol. 317, pp. 381–390, July 2017. DOI: 10.1016/j.powtec.2017.05.018.
  • P. A. Isaza and M. Bussmann, “An analytical solution for moving bed heat exchangers via integral transform methods,” Heat Transf. Eng., vol. 42, no. 3–4, pp. 215–222, May 2021. DOI: 10.1080/01457632.2019.1699290.
  • J. J. De Almeida, et al., “Análise da influência da condutividade térmica do ‘heat carrier’ no craqueamento térmico de butano em leito móvel,” presented at XXII Cong. Bra. de Eng. Quí, São Paulo, SP, vol. 1, no. 5, pp. 4–7. Sep, 2018, DOI: 10.1016/cobeq2018-PT.0772.
  • S. L. Bertoli, et al., “Semi analytical solution of a heat transfer and kinetic models applied in a biomass pyrolysis reactor,” presented at the Salt Palace Convention Center, Salt Lake City, UT, Nov. 2015.
  • W. J. Danziger, “Heat transfer to fluidized gas-solids mixtures in vertical transport,” Ind. Eng. Chem. Proc. Des. Dev., vol. 2, no. 4, pp. 269–276, Oct. 1963. DOI: 10.1021/i260008a003.
  • G. I. Wilkinson and J. R. Norman, “Heat transfer to a suspension of solids in a gas,” Trans. Inst. Chem. Eng., vol. 45, pp. 314–318, 1967.
  • R. Briller and R. L. Peskin, “Gas solids suspension convective heat transfer at a Reynolds number of 130,000,” J. Heat Transf., vol. 90, no. 4, pp. 464–468, Feb. 1968. DOI: 10.1115/1.3597543.
  • K. Kato, I. Onozawa and Y. Noguchi, “Gas particle heat transfer in a dispersed bed,” J. Chem. Eng. Jpn. / JCEJ, vol. 16, no. 3, pp. 178–182, Jun. 1983. DOI: 10.1252/jcej.16.178.
  • A. C. L. Lisbôa, “Transferência de Calor em Leito de Arrasto de Xisto (Heat Transfer in a Moving Bed of Oil Shale,” M.Sc. thesis, Rio de Janeiro, RJ, UFRJ, 1987.
  • N. Obuskovic, M. Colakyan and J. G. Knudsen, “Heat Transfer Between Moving Beds of Solids and a Transverse Finned Tube,” Heat Transf. Eng., vol. 12, no. 2, pp. 46–52, Jan. 1991. DOI: 10.1080/01457639108939751.
  • G. Jepson, A. Poll and W. Smith, “Heat transfer from gas to wall in a gas/solids transport line,” Trans. Inst. Chem. Eng., vol. 41, pp. 207–211, Jan. 1963.
  • L. Farbar and M. J. Morley, “Heat transfer to flowing gas-solid mixtures in a circular tube,” Ind. Eng. Chem., vol. 49, no. 7, pp. 1143–1150, Jul. 1957. DOI: 10.1021/ie50571a038.
  • S. Matsumoto, S. Ohnishi and S. Maeda, “Heat transfer to vertical gas-solids suspension flows,” J. Chem. Eng. Jpn. / JCEJ, vol. 11, no. 2, pp. 89–95, Apr. 1978. DOI: 10.1252/jcej.11.89.
  • T. Baumann, S. Zunft and R. Tamme, “Moving Bed Heat Exchangers for Use With Heat Storage in Concentrating Solar Plants: A Multiphase Model,” Heat Transf. Eng., vol. 35, no. 3, pp. 224–231, Sep. 2014. DOI: 10.1080/01457632.2013.825154.
  • S. L. Bertoli, R. Tribess, V. A. Castamann, A. Lovatel and C. K. De Souza, “Analytical solution of a heat transfer model for a tubular co-current diluted moving bed reactor with indirect heating and intraparticle gradients,” Powder Technol., vol. 351, pp. 259–272, Jun. 2019. DOI: 10.1016/j.powtec.2019.04.001.
  • R. Tribess, et al., “Analytical solution of a heat transfer model for a tubular co-current diluted moving bed heat exchanger with indirect heating and thermal losses to the environment,” Chem. Eng. Commun., pp. 1–19, May 2021. DOI: 10.1080/00986445.2021.1919882.
  • L. Farbar and C. A. Depew, “Heat transfer effects to gas-solids mixtures using solid spherical particles of uniform size,” Ind. Eng. Chem. Fund., vol. 2, no. 2, pp. 130–135, 1963. DOI: 10.1021/i160006a008.
  • M. A. Boothroyd and H. Haque, “Experimental investigation of heat transfer in the entrance region of a heated duct conveying fine particles,” Trans. Inst. Chem. Eng., vol. 48, pp. T109–T120, Jun. 1970. DOI: 10.1243/JMES_JOUR_1970_012_034_02.
  • S. Sadek, “Heat transfer to air-solids suspensions in turbulent flow,” Ind. Eng. Chem. Proc. Des. Dev., vol. 11, no. 1, pp. 133–135, Jan. 1972. DOI: 10.1021/i260041a026.
  • J. Bandrowski and G. Kaczmarzyk, “Gas-to-particle heat transfer in vertical pneumatic conveying of granular materials,” Chem. Eng. Sci., vol. 33, no. 10, pp. 1303–1310, 1978. DOI: 10.1016/0009-2509(78)85111-2.
  • L. I. S. V. Medeiros, et al., “Semi-analytical solution of a nonlinear heat transfer model for a tubular cocurrent moving-bed reactor with a first-order chemical reaction in the solid phase,” J. Heat Transf., vol. 143, no. 8, 083001, Aug. 2021. DOI: 10.1115/1.4051278.
  • S. L. Bertoli, “Transferência de Calor Convectiva e Radiante em Leito de Arrasto (Radiant and Convective Heat Transfer in Moving Beds),” M.Sc. thesis, UFRJ, Rio de Janeiro, 1989.
  • S. L. Bertoli, “Radiant and convective heat transfer on pneumatic transport of particles: An analytical study,” Int. J. Heat Mass Transf., vol. 43, no. 13, pp. 2345–2363, 2000. DOI: 10.1016/S0017-9310(99)00280-X.
  • H. F. Meier, D. Noriler and S. L. Bertoli, “A solution for a heat transfer model in a moving bed through the self-adjoint operator method,” Lat. Am. Appl. Res., vol. 39, no. 4, pp. 327–336, Sep. 2009.
  • S. L. Bertoli, et al., “A numerical solution of a model for heat transfer in moving beds,” Chem. Eng. Trans., vol. 43, pp. 1567–1572, May 2015. DOI: 10.3303/CET1543262.
  • S. L. Bertoli, et al., “Lumped analysis criteria for heat transfer in a diluted CO- current moving bed heat exchanger with isothermal walls,” Powder Technol., vol. 361, pp. 1038–1059, Feb. 2020. DOI: 10.1016/j.powtec.2019.10.092.
  • J. Sun and M. M. Chen, “A theoretical analysis of heat transfer due to particle impact,” Int. J. Heat Mass Transf., vol. 31, no. 5, pp. 969–975, May 1988. DOI: 10.1016/0017-9310(88)90085-3.
  • L. S. Fan and C. Zhu, Principles of Gas-Solid Flow. Cambridge, MA: Cambridge University Press, 1998,
  • W. J. Yang, Z. Y. Zhou and A. B. Yu, “Particle scale studies of heat transfer in a moving bed,” Powder Technol., vol. 281, pp. 99–111, Sep. 2015. DOI: 10.1016/j.powtec.2015.04.071.
  • N. J. Themelis and W. H. Gauvin, “Heat transfer to clouds of particles,” Can. J. Chem. Eng., vol. 41, no. 1, pp. 1–6, Feb. 1963. DOI: 10.1002/cjce.5450410103.
  • H. Tameriho, R. Echigo and S. Hasegawa, “Radiative heat transfer by flowing multiphase medium – Part III. An analysis on heat transfer of turbulent flow in a circular tube,” Int. J. Heat Mass Transf., vol. 16, no. 5, pp. 1199–1213, Jun. 1973. DOI: 10.1016/0017-9310(73)90131-2.
  • F. H. Azad and M. F. Modest, “Combined radiation and convection in absorbing, emitting and anisotropically scattering gas-particulate tube flow,” Int. J. Heat Mass Transf., vol. 24, no. 10, pp. 1681–1698, Oct. 1981. DOI: 10.1016/0017-9310(81)90077-6.
  • F. Kreith, R. M. Manglik and M. S. Bohn, Principles of Heat Transfer, 7th ed. Stamford, CT: Cengage Learning, 2010.
  • G. Beveridge and R. Schechter, Optimization Theory and Practice, New York: McGraw Hill, 1970.
  • D. P. Sekulic and L. Kmecko, “Three-fluid heat exchanger effectiveness,” Int. J. Heat. Mass Transf., vol. 117, no. 1, pp. 226–229, 1995. DOI: 10.1115/1.2822309.
  • D. Q. Kern, Process Heat Transfer. New York: McGraw-Hill, 1950,
  • Y. A. Çengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications, 6th ed. New York: McGraw-Hill Inc, 2020,
  • S. L. Bertoli, et al., “The Importance of limit solutions and temporal and spatial scales in the teaching of transport phenomena,” Rev. Ing. Mat. Cienc. Inf., vol. 3, no. 6, pp. 13–19, Jul. 2016. DOI: 10.21017/rimci.2016.v3.n6.a10.
  • J. H. Perry and D. W. Green, Chemical Engineers’ Handbook, 8th ed. New York: McGraw-Hill Book Co, 2008,
  • MEGAWATSOFT, “Steam Tables Calculator, Steam97Web v8.0,” [Online]. 2008. Available: https://www.steamtablesonline.com/steam97web.aspx?lang=%3E. Accessed: Jan. 23, 2020.
  • J. J. Almeida, “Solução semianalítica de um modelo de transferência de calor em leito de arrasto,” dissertation, Dept. Engenharia Química, FURB, Blumenau, SC, 2016.
  • C. R. Wylie and L. C. Barret, Advanced Engineering Mathematics, 5th ed. Singapore, MY: McGraw-Hill, 1990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.