208
Views
2
CrossRef citations to date
0
Altmetric
Articles

Steady-State Heat Flux Prediction to Slabs in a Walking Beam Furnace

, , , , &

References

  • S. H. Han, D. Chang, and C. Y. Kim, “A numerical analysis of slab heating characteristics in a walking beam type reheating furnace,” Int. J. Heat Mass Transfer, vol. 53, pp. 3855–3861, Sept. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.002.
  • Z. Ahmed, S. Lecompte, T. D. Raad and M. D. Paepe, “Steady state model of a reheating furnace for determining slab boundary conditions,” Energy Proc., vol. 158, pp. 5844–5849, Feb. 2019. DOI: 10.1016/j.egypro.2019.01.542.
  • G. Tang, et al., “CFD modeling and validation of a dynamic slab heating process in an industrial walking beam reheating furnace,” Appl. Thermal Engin., vol. 132, pp. 779–789, Mar. 2018. DOI: 10.1016/j.applthermaleng.2018.01.017.
  • S. H. Han and D. Chang, “Optimum residence time analysis for a walking beam type reheating furnace,” Int. J. Heat Mass Transfer, vol. 55, no. 15–16, pp. 4079–4087, Jul. 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.049.
  • J. Wang, Y. Liu, B. Sundén, R. Yang, J. Baleta and M. Vujanović, “Analysis of slab heating characteristics in a reheating furnace,” Energy Conv. Manage., vol. 149, pp. 928–936, Oct. 2017. DOI: 10.1016/j.enconman.2017.04.005.
  • C.-N. Lin, Y.-P. Luo, J.-Y. Jang and C.-H. Wang, “Novel Approach to Estimate the Optimum Zone Fuel Mass Flow for a WalkingBeam Type Reheating Furnace,” Heat Transfer Engin., vol. 39, no. 7–8, pp. 586–597, May 2018. DOI: 10.1080/01457632.2017.1325656.
  • Y. Hu, C. Tan, J. Broughton and P. A. Roach, “Development of a first-principles hybrid model for large-scale reheating furnace,” Appl. Energy, vol. 173, pp. 555–566, Jul. 2016. DOI: 10.1016/j.apenergy.2016.04.011.
  • T. Morgado, P. J. Coelho and P. Talukdar, “Assessment of uniform temperature assumption in zoning on the numerical simulation of a walking beam reheating furnace,” Appl. Thermal Engin., vol. 76, pp. 496–508, Feb. 2015. DOI: 10.1016/j.applthermaleng.2014.11.054.
  • R. Prieler, B. Mayr, M. Demuth, B. Holleis and C. Hochenauer, “Prediction of the heating characteristic of billets in a walking hearth type reheating furnace using CFD,” Int. J. Heat Mass Transfer, vol. 92, pp. 675–688, Jan. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.08.056.
  • M. Y. Kim, “A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace,” Int. J. Heat Mass Transfer, vol. 50, no. 19–20, pp. 3740–3748, Sept. 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.02.023.
  • R. Prieler, B. Mayr, M. Demuth, B. Holleis and C. Hochenauer, “Numerical analysis of the transient heating of steel billets and the combustion process under air-fired and oxygen enriched conditions,” Appl. Thermal Engin., vol. 103, pp. 252–263, Jun. 2016. DOI: 10.1016/j.applthermaleng.2016.04.091.
  • ANSYS Fluent Theory Guide. Canonsburg, PA: ANSYS, Inc., 2020R1.
  • B. Mayr, R. Prieler, M. Demuth, L. Moderer and C. Hochenauer, “CFD analysis of a pusher type reheating furnace and the billet heating characteristic,” Appl. Thermal Engin., vol. 115, pp. 986–994, Mar. 2017. DOI: 10.1016/j.applthermaleng.2017.01.028.
  • X. Liu, “A Numerical Model to Predict Scale Formation in an Industrial Reheat Furnace,” AISTech 2018: Proceedings of the Iron & Steel Technology Conference, 2018, v.3: 7-10 May Philadelphia, 2018.
  • J.-Y. Jang and J.-B. Huang, “Optimization of a slab heating pattern for minimum energy consumption in a walking-beam type reheating furnace,” Appl. Thermal Engin., vol. 85, pp. 313–321, Jun. 2015. DOI: 10.1016/j.applthermaleng.2015.04.029.
  • A. Jaklic, T. Kolenko and B. Zupancˇic, “The influence of the space between the billets on the productivity of a continuous walking-beam furnace,” Appl. Thermal Engin., vol. 25, no. 5–6, pp. 783–795, Apr. 2005. DOI: 10.1016/j.applthermaleng.2004.07.012.
  • V. K. Singh, P. Talukdara and P. J. Coelho, “Performance evaluation of two heat transfer models of a walking beam type reheat furnace,” Heat Transfer Engin., vol. 36, no. 1, pp. 91–101, Aug. 2015. DOI: 10.1080/01457632.2014.906287.
  • S. H. Han, D. Chang and C. Huh, “Efficiency analysis of radiative slab heating in a walking-beam-type,” Energy, vol. 36, no. 2, pp. 1265–1272, Feb. 2011. DOI: 10.1016/j.energy.2010.11.018.
  • J. G. Kim and K. Y. Huh, “Prediction of transient slab temperature distribution in the re-heating furnace of a walking-beam type for rolling of steel slabs,” ISIJ Int., vol. 40, no. 11, pp. 1115–1123, Jan. 2000. DOI: 10.2355/isijinternational.40.1115.
  • Energy Efficiency Guide for Industry in Asia? UNEP. 2006. "Thermal Energy Equipment: Furnaces and Refractories". www.energyefficiencyasia.org
  • M. Filipponi, F. Rossi, A. Presciutti and S. D. Ciantis, “Thermal Analysis of an Industrial Furnace,” in 16th CIRIAF National Congress – Sustainable Development, Environment and Human Health Protection, Oct. 2016. DOI: 10.20944/preprints201608.0029.v1.
  • ANSYS Fluent User's Guide. Canonsburg, PA: ANSYS Inc., 2020R1.
  • T. Ishii, C. Zhang and Y. Hino, “Numerical Study of the Performance of a Regenerative Furnace,” Heat Transfer Engin., vol. 23, no. 4, pp. 23–33, Nov. 2010. DOI: 10.1080/01457630290090473.
  • X. Ge, et al., “Numerical investigation of oxy-fuel combustion in 700C-ultrasupercritical boiler,” Fuel, vol. 207, pp. 602–614, 2017. DOI: 10.1016/j.fuel.2017.06.119.
  • P. D. Nguyen, et al., “Application of the Spectral Line-based Weighted-Sum-of-Gray-Gases model (SLWSGG) to the calculation of radiative heat transfer in steel reheating furnaces firing on low heating value gases,” J. Phys.: Conf. Ser, vol. 369, pp. 012008, 2012. DOI: 10.1088/1742-6596/369/1/012008.
  • P.-D. Nguyen, et al., “Modelling of flameless oxy-fuel combustion with emphasis on radiative heat transfer for low calorific value blast furnace gas,” Energy Procedia, vol. 120, pp. 492–499, 2017. DOI: 10.1016/j.egypro.2017.07.177.
  • R. I. corporation, “Thermocopleinfo,”. San Diego, CA: Reotemp Instrument corporation. [Online]. https://www.thermocoupleinfo.com/type-s-thermocouple.htm#:∼:text=Type%20S%20Thermocouple%20%28Platinum%20Rhodium%20-%2010%25%20%2F,is%20often%20used%20with%20a%20ceramic%20protection%20tube.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.