158
Views
2
CrossRef citations to date
0
Altmetric
Articles

Experimental and Artificial Neural Network Evaluation of Frost Formation on Square Finned Tube under Natural Convection

, ORCID Icon, &

References

  • A. Léoni, M. Mondot, F. Durier, R. Revellin, and P. Haberschill, “State-of-the-art review of frost deposition on flat surfaces,” Int. J. Refrig., vol. 68, pp. 198–217, Aug. 2016. DOI: 10.1016/j.ijrefrig.2016.04.004.
  • A. R. Tahavvor and M. Yaghoubi, “Analysis of early-stage frost formation in natural convection over a horizontal cylinder,” Int. J. Refrig., vol. 32, no. 6, pp. 1343–1349, Sep. 2009. DOI: 10.1016/j.ijrefrig.2009.02.002.
  • T. Matsuura and H. Koshima, “Introduction to chiral crystallization of achiral organic compounds: spontaneous generation of chirality,” J. Photochem. Photobiol. C Photochem. Rev., vol. 6, no. 1, pp. 7–24, Apr. 2005. DOI: 10.1016/j.jphotochemrev.2005.02.002.
  • A. Sadeghianjahromi, M. W. Sulaiman, U. Sajjad, and C. C. Wang, “Innovative fin designs for enhancing the airside performance of fin-and-flat tube heat exchangers,” J. Enhanc. Heat Transf., vol. 28, no. 1, pp. 1–32, 2021. DOI: 10.1615/JEnhHeatTransf.2020035714.
  • C. C. Wang, Y. J. Chang, S. J. Fan, and W. J. Sheu, “Some observations of the frost formation in fin arrays,” Heat Transf. Eng., vol. 25, no. 8, pp. 35–47, Dec. 2004. DOI: 10.1080/01457630490520257.
  • S. H. Lee, M. Lee, W. J. Yoon, and Y. Kim, “Frost growth characteristics of spirally-coiled circular fin-tube heat exchangers under frosting conditions,” Int. J. Heat Mass Transf., vol. 64, pp. 1–9, Apr. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.04.018.
  • J. Hwang and K. Cho, “Numerical prediction of frost properties and performance of fin-tube heat exchanger with plain fin under frosting,” Int. J. Refrig., vol. 46, pp. 59–68, Oct. 2014. DOI: 10.1016/j.ijrefrig.2014.04.026.
  • M. Amini, A. R. Pishevar, and M. Yaghoubi, “Experimental study of frost formation on a fin-and-tube heat exchanger by natural convection,” Int. J. Refrig., vol. 46, pp. 37–49, Oct. 2014. DOI: 10.1016/j.ijrefrig.2014.06.015.
  • M. Amini, M. Yaghoubi, and A. R. Pishevar, “Analysis of frost visualization over a fin and tube heat exchanger by natural convection,” Exp. Heat Transf., vol. 32, no. 1, pp. 36–50, Jan. 2019. DOI: 10.1080/08916152.2018.1473528.
  • L. Zhang, Y. Jiang, J. Dong, Y. Yao, and S. Deng, “An experimental study on the effects of frosting conditions on frost distribution and growth on finned tube heat exchangers,” Int. J. Heat Mass Transf., vol. 128, pp. 748–761, Jan. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.016.
  • X. Wu, S. Hu, and F. Chu, “Experimental study of frost formation on cold surfaces with various fin layouts,” Appl. Therm. Eng., vol. 95, pp. 95–105, Feb. 2016. DOI: 10.1016/j.applthermaleng.2015.11.045.
  • M. Song, L. Xia, N. Mao, and S. Deng, “An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil,” Appl. Energy, vol. 164, pp. 36–44, Feb. 2016. DOI: 10.1016/j.apenergy.2015.11.036.
  • A. B. Olcay, P. Avci, E. Bayrak, A. S. Dalkılıç, and S. Wongwises, “Experimental investigation of frost issue on various evaporators having different fin types,” Int. Commun. Heat Mass Transf., vol. 86, pp. 190–198, Aug. 2017. DOI: 10.1016/j.icheatmasstransfer.2017.05.029.
  • Y. Chung, J. W. Yoo, G. T. Kim, and M. S. Kim, “Prediction of the frost growth and performance change of air source heat pump system under various frosting conditions,” Appl. Therm. Eng., vol. 147, pp. 410–420, Jan. 2019. DOI: 10.1016/j.applthermaleng.2018.10.085.
  • W. J. Lee, K. J. Bae, and O. K. Kwon, “Effect of hydrophobic surfaces on frost retardation in fin-tube heat exchangers with various fin pitches,” Appl. Therm. Eng., vol. 176, pp. 115424, Jul. 2020. DOI: 10.1016/j.applthermaleng.2020.115424.
  • A. S. Pegallapati and M. Ramgopal, “Effect of heat transfer area distribution on frosting performance of refrigerator evaporator,” Int. J. Heat Mass Transf., vol. 175, pp. 121317, Aug. 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121317.
  • C. Reichl et al., “Frosting in heat pump evaporators part A: experimental investigation,” Appl. Therm. Eng., vol. 199, pp. 117487, Nov. 2021. DOI: 10.1016/j.applthermaleng.2021.117487.
  • S. Yoon, G. Hayase, and K. Cho, “Measurements of frost thickness and frost mass on a flat plate under heat pump condition,” Heat Transf. Eng., vol. 31, no. 12, pp. 965–972, Oct. 2010. DOI: 10.1080/01457631003638911.
  • A. R. Tahavvor and M. Yaghoubi, “Prediction of frost deposition on a horizontal circular cylinder under natural convection using artificial neural networks,” Int. J. Refrig., vol. 34, no. 2, pp. 560–566, Mar. 2011. DOI: 10.1016/j.ijrefrig.2010.10.008.
  • S. H. P. Gavin, “The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems,” in Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, 2013, pp. 1–17, DOI: 10.1080/10426914.2014.941480.
  • S. H. Hosseini, M. J. Rezaei, M. Bag-Mohammadi, A. Zendehboudi, and G. Ahmadi, “Prediction of frost layer over flat plates under natural and forced convection conditions using intelligent and least-square fitting approaches,” Appl. Therm. Eng., vol. 148, pp. 33–42, Feb. 2019. DOI: 10.1016/j.applthermaleng.2018.11.022.
  • S. H. Hosseini, M. Valizadeh, A. Zendehboudi, and M. Song, “General correlation for frost thermal conductivity on parallel surface channels,” Energy Build., vol. 225, pp. 110282, Oct. 2020. DOI: 10.1016/j.enbuild.2020.110282.
  • H. M. Asfahan et al., “Artificial intelligence for the prediction of the thermal performance of evaporative cooling systems,” Energies, vol. 14, no. 13, pp. 3946, Jan. 2021. DOI: 10.3390/en14133946.
  • U. Sajjad et al., “A deep learning method for estimating the boiling heat transfer coefficient of porous surfaces,” J. Therm. Anal. Calorim., vol. 145, no. 4, pp. 1911–1923, Feb. 2021. DOI: 10.1007/s10973-021-10606-8.
  • U. Sajjad, I. Hussain, and C. C. Wang, “A high-fidelity approach to correlate the nucleate pool boiling data of roughened surfaces,” Int. J. Multiph. Flow, vol. 142, pp. 103719, Sep. 2021. DOI: 10.1016/j.ijmultiphaseflow.2021.103719.
  • M. Karami, M. Yaghoubi, and A. Keyhani, “Experimental study of natural convection from an array of square fins,” Exp. Therm. Fluid Sci., vol. 93, pp. 409–418, May 2018. DOI: 10.1016/j.expthermflusci.2018.01.020.
  • D. Li and Z. Chen, “Visualization of effects of ultrasound on liquid droplet solidification and frost formation on cold flat surface,” Heat Transf. Eng., vol. 35, no. 11-12, pp. 1098–1104, Jul. 2014. DOI: 10.1080/01457632.2013.863129.
  • T. Benítez and S. A. Sherif, “Modeling spatial and temporal frost formation with distributed properties on a flat plate using the orthogonal collocation method,” Int. J. Refrig., vol. 76, pp. 193–205, Apr. 2017. DOI: 10.1016/j.ijrefrig.2017.01.026.
  • M. Song and C. Dang, “Review on the measurement and calculation of frost characteristics,” Int. J. Heat Mass Transf., vol. 124, pp. 586–614, Sep. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.094.
  • Y. Chung, S. I. Na, J. W. Yoo, and M. S. Kim, “A determination method of defrosting start time with frost accumulation amount tracking in air source heat pump systems,” Appl. Therm. Eng., vol. 184, pp. 116405, Feb. 2021. DOI: 10.1016/j.applthermaleng.2020.116405.
  • S. A. Iranagh, A. R. Tahavvor, M. Yaghoubi, and M. M. Tavakol, “Experimental and numerical investigation of frost formation on an array of square fins under natural convection condition,” Int. Commun. Heat Mass Transf., vol. 127, pp. 105556, Oct. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105556.
  • M. A. Rahman and A. M. Jacobi, “Condensation, frost formation, and frost melt-water retention characteristics on microgrooved brass surfaces under natural convection,” Heat Transf. Eng., vol. 34, no. 14, pp. 1147–1155, Nov. 2013. DOI: 10.1080/01457632.2013.776453.
  • E. Bartrons, C. Oliet, E. Gutiérrez, A. Naseri, and C. D. Pérez-Segarra, “A finite volume method to solve the frost growth using dynamic meshes,” Int. J. Heat Mass Transf., vol. 124, pp. 615–628, Sep. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.104.
  • Z. Cao, H. Han, B. Gu, and N. Ren, “A novel prediction model of frost growth on cold surface based on support vector machine,” Appl. Therm. Eng., vol. 29, no. 11-12, pp. 2320–2326, Aug. 2009. DOI: 10.1016/j.applthermaleng.2008.11.015.
  • A. Zendehboudi, B. Wang, and X. Li, “Application of smart models for prediction of the frost layer thickness on vertical cryogenic surfaces under natural convection,” Appl. Therm. Eng., vol. 115, pp. 1128–1136, Mar. 2017. DOI: 10.1016/j.applthermaleng.2017.01.049.
  • A. Zendehboudi and X. Li, “Robust predictive models for estimating frost deposition on horizontal and parallel surfaces,” Int. J. Refrig., vol. 80, pp. 225–237, Aug. 2017. DOI: 10.1016/j.ijrefrig.2017.05.013.
  • E. Sarkissian, The Levenberg-Marquardt algorithm for solving the nonlinear least squares problem: theory, implementation and application. California State University, Los Angeles [Online]. 2001. Available: https://books.google.fr/books?id=jZbcjwEACAAJ (last accessed 2001).
  • J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257, Jun. 1991. DOI: 10.1162/neco.1991.3.2.246.
  • B. M. Wilamowski, O. Kaynak, S. Iplikci, and M. O. Efe, “An algorithm for fast convergence in training neural networks,” paper presented at the Proceedings of the International Joint Conference on Neural Networks, Washington, DC, USA, vol. 3, pp. 1778–1782, Jul. 2001. DOI: 10.1109/ijcnn.2001.938431.
  • K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Quart. Appl. Math., vol. 2, no. 2, pp. 164–168, 1944. DOI: 10.1090/qam/10666.
  • D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, 1963. DOI: 10.1137/0111030.
  • L. Paninski and J. P. Cunningham, “Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience,” Curr. Opin. Neurobiol., vol. 50, pp. 232–241, Jan. 2018. DOI: 10.1101/196949.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., vol. 1, no. 1, pp. 3–17, Jan. 1988. DOI: 10.1016/0894-1777(88)90043-X.
  • A. R. Tahavvor and M. Yaghoubi, “Experimental and numerical study of frost formation by natural convection over a cold horizontal circular cylinder,” Int. J. Refrig., vol. 33, no. 7, pp. 1444–1458, Nov. 2010. DOI: 10.1016/j.ijrefrig.2010.06.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.