226
Views
2
CrossRef citations to date
0
Altmetric
Articles

Mixed Convective Transport around Counter Rotating Tandem Cylinders at Low Reynolds Number

&

References

  • M. Y. Younis, M. M. Alam and Y. Zhou, “Flow around two non-parallel tandem cylinders,” Phys. Fluids., vol. 28, no. 12, article no. 125106 (29 pp.), Dec. 2016. DOI: 10.1063/1.4972549.
  • A. Bakhtiari, et al., “The effects of marine fouling on the wake-induced vibration of tandem circular cylinders,” Ocean Eng, vol. 216, article no. 108093 (16 pages), 2020. DOI: 10.1016/j.oceaneng.2020.108093.
  • M. M. Zdravkovich, “Review-Review of flow interference between two circular cylinders in various arrangements,” ASME J. Fluids Eng., vol. 99, no. 4, pp. 618–633, Dec. 1977. DOI: 10.1115/1.3448871.
  • S. S. Chen, M. P. Paidoussis, M. K. Au-Yang and H. Saunders, “Flow-induced vibration of circular cylindrical structures,” J. Acoust. Soc. Am., vol. 75, no. 1, pp. 299–299, 1984. DOI: 10.1121/1.390308.
  • D. Sumner and H. K. Reitenbach, “Wake interference effects for two finite cylinders: A brief review and some new measurements,” J. Fluids Struct., vol. 89, pp. 25–38, Aug. 2019. DOI: 10.1016/j.jfluidstructs.2019.02.004.
  • R. King and D. J. Johns, “Wake interaction experiments with two flexible circular cylinders in flowing water,” J. Sound Vib., vol. 45, no. 2, pp. 259–283, 1976. DOI: 10.1016/0022-460X(76)90601-5.
  • P. W. Bearman and A. J. Wadcock, “The interaction between a pair of circular cylinders normal to a stream,” J. Fluid Mech., vol. 61, no. 3, pp. 499–511, 1973. DOI: 10.1017/S0022112073000832.
  • S. Ishigai, E. Nishikawa, K. Nishimura and K. Cho, “Experimental study on structure of gas flow in tube banks with tube axes normal to flow: Part 1, Karman vortex flow from two tubes at various spacings,” Bull. JSME., vol. 15, no. 86, pp. 949–956, 1972. DOI: 10.1299/jsme1958.15.949.
  • M. M. Zdravkovich, “The effects of interference between circular cylinders in cross flow,” J. Fluids Struct., vol. 1, no. 2, pp. 239–261, Apr. 1987. DOI: 10.1016/S0889-9746(87)90355-0.
  • J. C. Lin, Y. Yang and D. Rockwell, “Flow past two cylinders in tandem: Instantaneous and averaged flow structure,” J. Fluids Struct., vol. 16, no. 8, pp. 1059–1071, Dec. 2002. DOI: 10.1006/jfls.2002.0469.
  • T. Lee and S. Basu, “Nonintrusive measurements of the boundary layer developing on a single and two circular cylinders,” Exp. Fluids., vol. 23, no. 3, pp. 187–192, 1997. DOI: 10.1007/s003480050101.
  • D. Sumner, “Two circular cylinders in cross-flow: A review,” J. Fluids Struct., vol. 26, no. 6, pp. 849–899, Aug. 2010. DOI: 10.1016/j.jfluidstructs.2010.07.001.
  • Y. Zhou and M. W. Yiu, “Flow structure, momentum and heat transport in a two-tandem-cylinder wake,” J. Fluid Mech., vol. 548, no. 1, pp. 17–48, 2006. DOI: 10.1017/S002211200500738X.
  • G. Xu and Y. Zhou, “Strouhal numbers in the wake of two inline cylinders,” Exp Fluids., vol. 37, no. 2, pp. 248–256, 2004. DOI: 10.1007/s00348-004-0808-0.
  • T. Igarashi, “Characteristics of the flow around two circular cylinders arranged in tandem: 1st report,” Bull. JSME, vol. 24, no. 188, pp. 323–331, 1981. DOI: 10.1299/jsme1958.24.323.
  • M. M. Alam and Y. Zhou, “Phase lag between vortex shedding from two tandem bluff bodies,” J. Fluids Struct, vol. 23, no. 2, pp. 339–347, Feb. 2007. DOI: 10.1016/j.jfluidstructs.2006.11.003.
  • V. Puliyeri, S. Vengadesan and K. Arul Prakash, “Effect of cylinder arrangement on fluid flow and heat transfer characteristics past four elliptic cylinders,” Heat Transf. Eng., vol. 42, no. 212021, pp. 1789-1810, 2020. DOI: 10.1080/01457632.2020.1826739.
  • M. M. Alam, M. Moriya, K. Takai and H. Sakamoto, “Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number,” J. Wind Eng. Ind. Aerodyn., vol. 91, no. 1–2, pp. 139–154, 2003. DOI: 10.1016/S0167-6105(02)00341-0.
  • M. M. Zdravkovich and D. L. Pridden, “Interference between two circular cylinders; Series of unexpected discontinuities,” J. Wind Eng. Ind. Aerodyn., vol. 2, no. 3, pp. 255–270, 1977. DOI: 10.1016/0167-6105(77)90026-5.
  • N. Mahír and Z. Altaç, “Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements,” Int. J. Heat Fluid Flow., vol. 29, no. 5, pp. 1309–1318, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.05.001.
  • J. R. Meneghini, F. Saltara, C. L. R. Siqueira and J. A. Ferrari, “Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements,” J. Fluids Struct., vol. 15, no. 2, pp. 327–350, 2001. DOI: 10.1006/jfls.2000.0343.
  • ŽG. Kostić and S. N. Oka, “Fluid flow and heat transfer with two cylinders in cross flow,” Int. J. Heat Mass Transf., vol. 15, no. 2, pp. 279–299, Feb. 1972. DOI: 10.1016/0017-9310(72)90075-0.
  • H. Iacovides, B. Launder and A. West, “A comparison and assessment of approaches for modelling flow over in-line tube banks,” Int. J. Heat Fluid Flow., vol. 49, pp. 69–79, Oct. 2014. DOI: 10.1016/j.ijheatfluidflow.2014.05.011.
  • S. Mittal, V. Kumar and A. Raghuvanshi, “Unsteady incompressible flows past two cylinders in tandem and staggered arrangements,” Int. J. Numer. Meth. Fluids, vol. 25, no. 11, pp. 1315–1344, 1997. DOI: 10.1002/(sici)1097-0363(19971215)25:11 < 1315::aid-fld617 > 3.3.co;2-g.
  • H. M. Badr, S. C. R. Dennis and P. J. S. Young, “Steady and unsteady flow past a rotating circular cylinder at low Reynolds numbers,” Comput. Fluids., vol. 17, no. 4, pp. 579–609, Jan 1989. DOI: 10.1016/0045-7930(89)90030-3.
  • G. R. S. Assi, R. M. Orselli and M. Silva-Ortega, “Control of vortex shedding from a circular cylinder surrounded by eight rotating wake-control cylinders at Re = 100,” J. Fluids Struct., vol. 89, pp. 13–24, Aug. 2019. DOI: 10.1016/j.jfluidstructs.2019.03.003.
  • M. K. Chauhan, S. Dutta and B. K. Gandhi, “Wake flow modification behind a square cylinder using control rods,” J. Wind Eng. Ind. Aerodyn., vol. 184, pp. 342–361, Jan 2019. DOI: 10.1016/j.jweia.2018.12.002.
  • A. Gupta and A. K. Saha, “Suppression of vortex shedding in flow around a square cylinder using control cylinder,” Eur. J. Mech. – B Fluids., vol. 76, pp. 276–291, Jul 2019. DOI: 10.1016/j.euromechflu.2019.03.006.
  • A. K. Singh and N. Kishore, “Buoyancy-aided mixed convection between shear-thinning non-Newtonian nanofluids and unbounded elliptic cylinders in a vertical channel,” Heat Transf. Eng., vol. 41, no. 6–7, pp. 536–550, Apr. 2020. DOI: 10.1080/01457632.2018.1546803.
  • S. Sarkar, S. Ganguly and G. Biswas, “Mixed convective heat transfer of nanofluids past a circular cylinder in cross flow in unsteady regime,” Int. J. Heat Mass Transf., vol. 55, no. 17–18, pp. 4783–4799, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.04.046.
  • T. Tang and D. B. Ingham, “On steady flow past a rotating circular cylinder at Reynolds numbers 60 and 100,” Comput. Fluids, vol. 19, no. 2, pp. 217–230, Jan. 1991. DOI: 10.1016/0045-7930(91)90034-F.
  • L. K. Doreti and L. Dineshkumar, “Control techniques in flow past a cylinder- A review,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 377, article no. 012144 (17 pages), Jun. 2018. DOI: 10.1088/1757-899X/377/1/012144.
  • A. S. Chan and A. Jameson, “Suppression of the unsteady vortex wakes of a circular cylinder pair by a doublet-like counter-rotation,” Int. J. Numer. Methods Fluids., vol. 63, no. 1, pp. 22–39, 2010. DOI: 10.1002/fld.2075.
  • D. Chatterjee, K. Gupta, V. Kumar and S. A. Varghese, “Rotation induced flow suppression around two tandem circular cylinders at low Reynolds number,” Fluid Dyn. Res, vol. 49, no. 4, article no. 045503 (17 pages), 2017. DOI: 10.1088/1873-7005/aa6728.
  • S. Kang, “Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers,” Phys. Fluids, vol. 15, no. 9, pp. 2486–2498, Sep. 2003. DOI: 10.1063/1.1596412.
  • G. Xiao-Hui, L. Jian-Zhong and N. De-Ming, “Vortex structures and behavior of a flow past two rotating circular cylinders arranged side-by-side,” Chinese Phys. Lett, vol. 26, no. 8, article no. 084701 (4 pages), Aug. 2009. DOI: 10.1088/0256-307X/26/8/084701.
  • D. Stojković, M. Breuer and F. Durst, “Effect of high rotation rates on the laminar flow around a circular cylinder,” Phys. Fluids, vol. 14, no. 9, pp. 3160–3178, Sep. 2002. DOI: 10.1063/1.1492811.
  • D. Chatterjee and N. V. V. K. Chaitanya, “Convective transport around two rotating tandem circular cylinders at low Reynolds numbers,” Sādhanā, vol. 45, no. 1, 107 article no. (14 pages), Dec. 2020. DOI: 10.1007/s12046-020-01358-6.
  • M. Darvishyadegari and R. Hassanzadeh, “Heat and fluid flow around two co-rotating cylinders in tandem arrangement,” Int. J. Therm. Sci., vol. 135, pp. 206–220, Jan. 2019. DOI: 10.1016/j.ijthermalsci.2018.09.014.
  • M. Darvishyadegari and R. Hassanzadeh, “Convective heat transfer and fluid flow of two counter-rotating cylinders in tandem arrangement,” Acta Mech., vol. 229, no. 4, pp. 1783–1802, 2018. Apr. DOI: 10.1007/s00707-017-2070-6.
  • Y. T. Chew, M. Cheng and S. C. Luo, “A numerical study of flow past a rotating circular cylinder using a hybrid vortex scheme,” J. Fluid Mech., vol. 299, pp. 35–71, Sep. 1995. DOI: 10.1017/S0022112095003417.
  • D. Chatterjee, “Dual role of thermal buoyancy in controlling boundary layer separation around bluff obstacles,” Int. Commun. Heat Mass Transf., vol. 56, pp. 152–158, Aug. 2014. DOI: 10.1016/j.icheatmasstransfer.2014.06.012.
  • D. Chatterjee and C. Sinha, “Influence of thermal buoyancy on vortex shedding behind a rotating circular cylinder in cross flow at subcritical Reynolds numbers,” ASME J. Heat Transf., vol. 136, no. 5, article no. 051704, May 2014 (16 pages). DOI: 10.1115/1.4026007.
  • D. Chatterjee, “Triggering vortex shedding by superimposed thermal buoyancy around bluff obstacles in cross-flow at low Reynolds numbers,” Numer. Heat Transf. Part Appl., vol. 61, no. 10, pp. 800–806, May 2012. DOI: 10.1080/10407782.2012.672862.
  • E. Salcedo, J. C. Cajas, C. Treviño and L. Martínez-Suástegui, “Numerical investigation of mixed convection heat transfer from two isothermal circular cylinders in tandem arrangement: Buoyancy, spacing ratio, and confinement effects,” Theor. Comput. Fluid Dyn., vol. 31, no. 2, pp. 159–187, Apr. 2017. DOI: 10.1007/s00162-016-0411-z.
  • F. Karimi, H. Xu, Z. Wang, M. Yang and Y. Zhang, “Numerical simulation of steady mixed convection around two heated circular cylinders in a square enclosure,” Heat Transf. Eng., vol. 37, no. 1, pp. 64–75, Jan. 2016. DOI: 10.1080/01457632.2015.1042343.
  • P. C. Jain and B. L. Lohar, “Unsteady mixed convection heat transfer from a horizontal circular cylinder,” J. Heat Transf., vol. 101, no. 1, pp. 126–131, Feb. 1979. DOI: 10.1115/1.3450902.
  • D. Chatterjee, “Mixed convection heat transfer from tandem square cylinders in a vertical channel at low Reynolds numbers,” Numer. Heat Transf. Part Appl., vol. 58, no. 9, pp. 740–755, 2010. DOI: 10.1080/10407782.2010.516703.
  • H. Yang, W. Zhang and Z. Zhu, “Unsteady mixed convection in a square enclosure with an inner cylinder rotating in a bi-directional and time-periodic mode,” Int. J. Heat Mass Transf., vol. 136, pp. 563–580, Jun. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.041.
  • E. Salcedo, J. C. Cajas, C. Treviño and L. Martínez-Suástegui, “Unsteady mixed convection heat transfer from two confined isothermal circular cylinders in tandem: Buoyancy and tube spacing effects,” Int. J. Heat Fluid Flow., vol. 60, pp. 12–30, Aug. 2016. DOI: 10.1016/j.ijheatfluidflow.2016.04.001.
  • W. Zhang, X. Chen, H. Yang, H. Liang and Y. Wei, “Forced convection for flow across two tandem cylinders with rounded corners in a channel,” Int. J. Heat Mass Transf., vol. 130, pp. 1053–1069, Mar. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.125.
  • Q. Zhou, M. M. Alam, S. Cao, H. Liao and M. Li, “Numerical study of wake and aerodynamic forces on two tandem circular cylinders at Re = 103,” Phys. Fluids., vol. 31, no. 4, article no. 045103 (16 pages), Apr. 2019. DOI: 10.1063/1.5087221.
  • J. Shang, Q. Zhou, M. M. Alam, H. Liao and S. Cao, “Numerical studies of the flow structure and aerodynamic forces on two tandem square cylinders with different chamfered-corner ratios,” Phys. Fluids., vol. 31, no. 7, article no. 075102 (15 pages), Jul. 2019. DOI: 10.1063/1.5100266.
  • S. Sarkar, C. Mondal, N. K. Manna and S. K. Saha, “Forced convection past a semi-circular cylinder at incidence with a downstream circular cylinder: Thermofluidic transport and stability analysis,” Phys. Fluids, vol. 33, no. 2, article no. 023603 (18 pages), Feb. 2021. DOI: 10.1063/5.0039167.
  • H. Nemati, M. Farhadi, K. Sedighi, M. M. Pirouz and N. N. Abatari, “Convective heat transfer from two rotating circular cylinders in tandem arrangement by using lattice Boltzmann method,” Appl. Math. Mech.-Engl. Ed., vol. 33, no. 4, pp. 427–444, Apr. 2012. DOI: 10.1007/s10483-012-1561-6.
  • A. Sohankar and A. Etminan, “Forced-convection heat transfer from tandem square cylinders in cross flow at low Reynolds numbers,” Int. J. Numer. Meth. Fluids, vol. 60, no. 7, pp. 733–751, Jul. 2009. DOI: 10.1002/fld.1909.
  • ANSYS Workbench User’s Guide, Release 13.0, ANSYS Inc., Canonsburg, PA, 2010,
  • H. S. Yoon, J. H. Seo and J. H. Kim, “Laminar forced convection heat transfer around two rotating side-by-side circular cylinder,” Int. J. Heat Mass Transf., vol. 53, no. 21–22, pp. 4525–4535, Oct. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.041.
  • C. H. K. Williamson, “2-D and 3-D aspects of the wake of a cylinder and their relation to wake computations,” in Vortex Dynamics and Vortex Methods, vol. 28, Rhode Island, USA: American Mathematical Society, 1991, pp. 719–751.
  • C. Norberg, “Fluctuating lift on a circular cylinder: Review and new measurements,” J. Fluids Struct, vol. 17, no. 1, pp. 57–96, Jan. 2003. DOI: 10.1016/S0889-9746(02)00099-3.
  • J. R. Meneghini, “Numerical simulation of bluff body flow control using a discrete vortex method,” Ph.D. dissertation, 1993. University of London, UK.
  • H. Ding, C. Shu, K. S. Yeo and D. Xu, “Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods,” Int. J. Numer. Meth. Fluids, vol. 53, no. 2, pp. 305–332, Jan. 2007. DOI: 10.1002/fld.1281.
  • M. Braza, P. Chassaing and H. H. Minh, “Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder,” J. Fluid Mech, vol. 165, no. 1, pp. 79–130, 1986. Apr. DOI: 10.1017/S0022112086003014.
  • S. Kang, H. Choi and S. Lee, “Laminar flow past a rotating circular cylinder,” Phys. Fluids, vol. 11, no. 11, pp. 3312–3321, Nov. 1999. DOI: 10.1063/1.870190.
  • P. H. Oosthuizen and S. Madan, “Combined convective heat transfer from horizontal cylinders in air,” ASME J. Heat Transf, vol. 92, no. 1, pp. 194–196, Feb 1970. DOI: 10.1115/1.3449630.
  • A. T. Srinivas, R. P. Bharti and R. P. Chhabra, “Mixed convection heat transfer from a cylinder in power-law fluids: Effect of aiding buoyancy,” Ind. Eng. Chem. Res, vol. 48, no. 21, pp. 9735–9754, Nov 2009. DOI: 10.1021/ie801892m.
  • D. Chatterjee and B. Mondal, “On the vortex shedding mechanism behind a circular cylinder subjected to cross buoyancy at low Reynolds numbers,” Comput Thermal Scien, vol. 4, no. 1, pp. 23–38, 2012. DOI: 10.1615/ComputThermalScien.2012003930.
  • N. V. V. Krishna Chaitanya and D. Chatterjee, “Influence of counter rotation on fluid flow and heat transfer around tandem circular cylinders at low Reynolds number,” J. Braz. Soc. Mech. Sci. Eng, vol. 43, article no. 357 (16 pages), Jul 2021. DOI: 10.1007/s40430-021-03072-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.