185
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of Boundary Conditions and Turbulence Treatment on the Simulated Performance of a Ribbed Heat Exchanger

, , &

References

  • B. W. Webb and S. Ramadhyani, “Conjugate heat transfer in a channel with staggered ribs,” Int. J. Heat Mass Transfer, vol. 28, no. 9, pp. 1679–1687, Sep. 1985. DOI: 10.1016/0017-9310(85)90142-5.
  • M. Sheikholeslami, M. Goji-Bandpy and D. D. Ganji, “Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices,” Renew. Sustain. Energy Rev., vol. 49, pp. 444–469, Sep. 2015. DOI: 10.1016/j.rser.2015.04.113.
  • R. J. Goldstein, et al., “Heat transfer - A review of 2004 literature,” Int. J. Heat Mass Transfer, vol. 53, no. 21–22, pp. 4343–4396, Oct. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.004.
  • S. K. Jain, G. D. Agrawal and R. Misra, “A detailed review on various V-shaped ribs roughened solar air heater,” Heat Mass Transfer, vol. 55, no. 12, pp. 3369–3412, 2019. DOI: 10.1007/s00231-019-02656-4.
  • B. Yang, T. Gao, J. Gong and J. Li, “Numerical investigation on flow and heat transfer of pulsating flow in various ribbed channels,” Appl. Therm. Eng., vol. 145, pp. 576–589, Dec. 2018. DOI: 10.1016/j.applthermaleng.2018.09.041.
  • J. Wang, J. Liu, L. Wang, B. Sundèn and S. Wang, “Numerical investigation of heat transfer and fluid flow in a rotating rectangular channel with variously-shaped discrete ribs,” Appl. Therm. Eng., vol. 129, pp. 1369–1381, Jan. 2018. DOI: 10.1016/j.applthermaleng.2017.09.142.
  • Y.-D. Liu, L. A. Diaz and N. V. Suryanarayana, “Heat transfer enhancement in air heating fiat-plate solar collectors,” Trans. ASME J. Solar Energy Eng., vol. 106, no. 3, pp. 358–363, Aug. 1984. DOI: 10.1115/1.3267608.
  • B. N. Prasad and J. S. Saini, “Effect of artificial roughness on heat transfer and friction factor in a solar air heater,” Solar Energy, vol. 41, no. 6, pp. 555–560, 1988. DOI: 10.1016/0038-092X(88)90058-8.
  • B. N. Prasad and J. S. Saini, “Optimal thermohydraulic performance of artificially roughened solar air heaters,” Solar Energy, vol. 47, no. 2, pp. 91–96, 1991. DOI: 10.1016/0038-092X(91)90039-Y.
  • R. L. Webb, E. R. G. Eckert and R. J. Goldstein, “Heat transfer and friction in tubes with repeated-rib roughness,” Int. J. Heat Mass Transfer, vol. 14, no. 4, pp. 601–617, Apr. 1971. DOI: 10.1016/0017-9310(71)90009-3.
  • S. K. Verma and B. N. Prasad, “Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters,” Renew. Energy, vol. 20, no. 1, pp. 19–36, May 2000. DOI: 10.1016/S0960-1481(99)00081-6.
  • T. Chompookham, C. Thianpong, S. Kwankaomeng and P. Promvonge, “Heat transfer augmentation in a wedge-ribbed channel using winglet vortex generators,” Int. Commun. Heat Mass Transfer, vol. 37, no. 2, pp. 163–169, Feb. 2010. DOI: 10.1016/j.icheatmasstransfer.2009.09.012.
  • T. Hagari, T. K. Ishida, T. Oda, Y. Douura and Y. Kinoshito, “Heat transfer and pressure losses of W-shaped small ribs at high Reynolds numbers for combustor liner,” J. Eng. Gas Turbines Power, vol. 133, no. 9, pp. 091901, Sep. 2011. DOI: 10.1115/1.4002878.
  • Y. Li, Y. Rao, D. Wang, P. Zhang and X. Wu, “Heat transfer and pressure loss of turbulent flow in channels with miniature structured ribs on one wall,” Int. J. Heat Mass Transfer, vol. 131, pp. 584–593, Mar. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.067.
  • G. Tanda, “Heat transfer in rectangular channels with transverse and V-shaped broken ribs,” Int. J. Heat Mass Transfer, vol. 47, no. 2, pp. 229–243, Jan. 2004. DOI: 10.1016/S0017-9310(03)00414-9.
  • L. Baggetta, F. Satta and G. Tanda, “A possible strategy for the performance enhancement of turbine blade internal cooling with inclined ribs,” Heat Transfer Eng., vol. 40, no. 1–2, pp. 184–192, Jan. 2019. DOI: 10.1080/01457632.2017.1421305.
  • F. Satta, G. Tanda and G. Venturino, “Effect of entrance geometry on heat transfer in a rib-roughened rectangular channel,” Heat Transfer Eng., vol. 43, no. 7, pp. 623–637, 2022. DOI: 10.1080/01457632.2021.1896836.
  • J. Liu, J. Wang, S. Hussain, L. Wang, G. Xie and B. Sundén, “Application of fractal theory in the arrangement of truncated ribs in a rectangular cooling channel (4:1) of a turbine blade,” Appl. Thermal Eng., vol. 139, pp. 488–505, Jul. 2018. DOI: 10.1016/j.applthermaleng.2018.04.133.
  • Y. Rao and P. Zhang, “Experimental study of heat transfer and pressure loss in channels with miniature V rib-dimple hybrid structure,” Heat Transfer Eng., vol. 41, no. 15–16, pp. 1431–1441, 2020. DOI: 10.1080/01457632.2019.1628502.
  • N. Kaewchoothong, K. Maliwan, K. Takeishi and C. Nuntadusit, “Effect of inclined ribs on heat transfer coefficient in stationary square channel,” Theor. Appl. Mech. Lett., vol. 7, no. 6, pp. 344–350, Nov. 2017. DOI: 10.1016/j.taml.2017.09.013.
  • C. Ma, Y. Ji, S. Zang and H. Chen, “An experimental study on convective heat transfer performance of steam and air flow in V-shaped rib roughened channels,” Exp. Heat Transfer, vol. 32, no. 1, pp. 51–68, 2019. DOI: 10.1080/08916152.2018.1473529.
  • N. Kaewchoothong, T. Sukato, P. Narato and C. Nuntadusit, “Flow and heat transfer characteristics on thermal performance inside the parallel flow channel with alternative ribs based on photovoltaic/thermal (PV/T) system,” Appl. Therm. Eng., vol. 185, pp. 116237, Feb. 2021. DOI: 10.1016/j.applthermaleng.2020.116237.
  • S. Eiamsa-Ard and W. Changcharoen, “Analysis of turbulent heat transfer and fluid flow in channels with various ribbed internal surfaces,” J. Therm. Sci., vol. 20, no. 3, pp. 260–267, 2011. DOI: 10.1007/s11630-011-0468-3.
  • A. Boulemtafes-Boukadoum and A. Benzaoui, “CFD based analysis of heat transfer enhancement in solar air heater provided with transverse rectangular ribs,” Energy Procedia, vol. 50, pp. 761–772, 2014. DOI: 10.1016/j.egypro.2014.06.094.
  • T. Ma, Q-w Wang, M. Zeng, Y-t Chen, Y. Liu and V. Nagarajan, “Study on heat transfer and pressure drop performances of ribbed channel in the high temperature heat exchanger,” Appl. Energy, vol. 99, pp. 393–401, Nov. 2012. DOI: 10.1016/j.apenergy.2012.05.030.
  • A. Akcayoglu and C. Nazli, “A comprehensive numerical study on thermohydraulic performance of fluid flow in triangular ducts with delta-winglet vortex generators,” Heat Transfer Eng., vol. 39, no. 2, pp. 107–119, 2018. DOI: 10.1080/01457632.2017.1288046.
  • E. Ali, J. Park and H. Park, “Numerical investigation of enhanced heat transfer in a rectangular channel with winglets,” Heat Transfer Eng., vol. 42, no. 8, pp. 695–705, 2021. DOI: 10.1080/01457632.2020.1723845.
  • Z. Wang, Y. Yin, L. Yang, Y. Wang and Y. Luan, “Similar characteristics of heat transfer in different scale cooling channel with ribs,” Heat Transfer Eng., vol. 43, no. 12, pp. 1025–1040, 2022. DOI: 10.1080/01457632.2021.1932038.
  • A. Afzal, H. Chung, K. Muralidhar and H. H. Cho, “Neural-network-assisted optimization of rectangular channels with intersecting ribs for enhanced thermal performance,” Heat Transfer Eng., vol. 41, no. 18, pp. 1609–1625, 2020. DOI: 10.1080/01457632.2019.1661693.
  • S. Chokphoemphun, P. Promthaisong, N. Pipatpaiboonm and N. Onsalung, “Thermal augmentation in a force convective cabinet dryer using zigzag ribs fitted on air heater section,” Heat Transfer Eng., vol. 42, no. 15, pp. 1249–1267, 2021. DOI: 10.1080/01457632.2020.1785695.
  • D. Zheng, X. Wang and Q. Yuan, “Numerical investigation on the flow and heat transfer characteristics in a rectangular channel with V-shaped slit ribs,” Infrared Phys. Technol., vol. 101, pp. 56–67, 2019. DOI: 10.1016/J.INFRARED.2019.06.00.
  • D. Zheng, X. Wang and Q. Yuan, “The flow and heat transfer characteristics in a rectangular channel with convergent and divergent slit ribs,” Int. J. Heat Mass Transfer, vol. 141, pp. 464–475, Oct. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.06.060.
  • Y. Liu, P. G. Tucker and G. Lo Iacono, “Comparison of zonal RANS and LES for a non-isothermal ribbed channel flow,” Int. J. Heat Fluid Flow, vol. 27, no. 3, pp. 391–401, Jun. 2006. DOI: 10.1016/j.ijheatfluidflow.2005.11.004.
  • A. Bjerg, K. Christoffersen, H. Sørensen and J. Haervig, “Flow structures and heat transfer in repeating arrangements of staggered rectangular winglet pairs by Large Eddy Simulations: effect of winglet height and longitudinal pitch distance,” Int. J. Heat Mass Transfer, vol. 131, pp. 654–663, Mar. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.015.
  • A. Colleoni, A. Toutant and G. Olalde, “Simulation of an innovative internal design of a plate solar receiver: comparison between RANS and LES results,” Solar Energy, vol. 105, pp. 732–741, Jul. 2014. DOI: 10.1016/j.solener.2014.04.017.
  • E. Toubiana, R. Gautier, D. Bougeard and S. Russeil, “Large Eddy Simulation of transitional flows in an elliptical finned-tube heat exchanger,” Int. J. Therm. Sci., vol. 144, pp. 158–172, Oct. 2019. DOI: 10.1016/j.ijthermalsci.2019.05.002.
  • P. Peltonen, K. Saari, K. Kukko, V. Vuorinen and J. Partanen, “Large-Eddy Simulation of local heat transfer in plate and pin fin heat exchangers confined in a pipe flow,” Int. J. Heat Mass Transfer, vol. 134, pp. 641–655, May 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.046.
  • F. Stern, R. V. Wilson, H. W. Coleman and E. G. Paterson, “Comprehensive approach to verification and validation of CFD simulations part 1: Methodology and procedures,” J. Fluids Eng., vol. 123, no. 4, pp. 793–802, 2001. DOI: 10.1115/1.1412235.
  • I. B. Celik, “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications,” J. Fluids Eng., vol. 130, no. 7, pp. 078001, Jul. 2008. DOI: 10.1115/1.2960953.
  • J. C. Tyacke and P. G. Tucker, “Future use of Large Eddy Simulation in aero-engines,” J. Turbomach., vol. 137, no. 8, pp. 081005, Aug. 2015. DOI: 10.1115/1.4029363.
  • Ansys® Fluent, R15.0, User’s Guide. Canonsburg, Pennsylvania, USA: ANSYS, Inc., 2015.
  • Ansys® Fluent, R15.0, Theory Guide. Canonsburg, Pennsylvania, USA: ANSYS, Inc., 2015.
  • L. Winchler, et al., “Conjugate heat transfer methodology for thermal design and verification of gas turbine cooled components,” J. Turbomach., vol. 140, no. 12, pp. 121001, Dec. 2018. DOI: 10.1115/1.4041061.
  • M. Lesieur, O. Métais and P. Comte, Large-Eddy Simulations of Turbulence. Cambridge, UK: Cambridge University Press, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.