748
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

A Novel 3D Printed Air-Cooled Fuel Cooler Heat Exchanger for Aviation Industry

ORCID Icon, , &

References

  • Heatric Inc., PCHE Heat Exchangers. Dorset, UK: Heatric Inc, 2022. [Online]. Available: https://www.heatric.com/home/resources/technical-documents-whitepapers/. Accessed: Apr. 15, 2022.
  • Q. Li, G. Flamant, X. Yuan, P. Neveu, and L. Luo, “Compact heat exchangers: a review and future applications for a new generation of high temperature solar receivers,” Renew. Sustain. Energy Rev., vol. 15, no. 9, pp. 4855–4875, Dec. 2011. DOI: 10.1016/j.rser.2011.07.066.
  • J. E. Hesselgreaves, R. Law, and D. Reay, Compact Heat Exchangers: Selection, Design and Operation, 2nd ed. Newcastle, UK: Butterworth-Heinemann, 2016.
  • S. Baek, J. H. Kim, S. Jeong, and J. Jung, “Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction,” Cryogenics, vol. 52, no. 7-9, pp. 366–374, Sep. 2012. DOI: 10.1016/j.cryogenics.2012.03.001.
  • I. H. Kim, H. C. No, J. I. Lee, and B. G. Jeon, “Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations,” Nucl. Eng. Des., vol. 239, no. 11, pp. 2399–2408, Nov. 2009. DOI: 10.1016/j.nucengdes.2009.07.005.
  • F. Vitillo, L. Cachon, P. Reulet, E. Laroche, and P. Millan, “An innovative plate heat exchanger of enhanced compactness,” Appl. Therm. Eng., vol. 87, pp. 826–838, Aug. 2015. DOI: 10.1016/j.applthermaleng.2015.05.019.
  • B. Blakey-Milner et al., “Metal additive manufacturing in aerospace: a review,” Mater. Des., vol. 209, pp. 110008, Nov. 2021. DOI: 10.1016/j.matdes.2021.110008.
  • R. Tiwari, R. S. Andhare, A. Shooshtari, and M. Ohadi, “Development of an additive manufacturing-enabled compact manifold microchannel heat exchanger,” Appl. Therm. Eng., vol. 147, pp. 781–788, Jan. 2019. DOI: 10.1016/j.applthermaleng.2018.10.122.
  • A. S. Sabau et al., “Design, additive manufacturing, and performance of heat exchanger with a novel flow-path architecture,” Appl. Therm. Eng., vol. 180, pp. 115775, Nov. 2020. DOI: 10.1016/j.applthermaleng.2020.115775.
  • R. P. P. da Silva et al., “Thermal and hydrodynamic analysis of a compact heat exchanger produced by additive manufacturing,” Appl. Therm. Eng., vol. 193, pp. 116973, Jul. 2021. DOI: 10.1016/j.applthermaleng.2021.116973.
  • M. Cardone and B. Gargiulo, “Design and experimental testing of a mini channel heat exchanger made in additive manufacturing,” Energy Procedia, vol. 148, pp. 932–939, Aug. 2018. DOI: 10.1016/j.egypro.2018.08.092.
  • S. M. Thompson, Z. S. Aspin, N. Shamsaei, A. Elwany, and L. Bian, “Additive manufacturing of heat exchangers: a case study on a multi-layered Ti–6Al–4V oscillating heat pipe,” Addit. Manuf., vol. 8, pp. 163–174, Oct. 2015. DOI: 10.1016/j.addma.2015.09.003.
  • D. Bacellar, V. Aute, Z. Huang, and R. Radermacher, “Design optimization and validation of high-performance heat exchangers using approximation assisted optimization and additive manufacturing,” Sci. Technol. Built Environ., vol. 23, no. 6, pp. 896–911, Jul. 2017. DOI: 10.1080/23744731.2017.1333877.
  • C. Zhang et al., “Additive manufacturing of products with functional fluid channels: A review,” Addit. Manuf., vol. 36, pp. 101490, Dec. 2020. DOI: 10.1016/j.addma.2020.101490.
  • D. C. Deisenroth et al., “Review of heat exchangers enabled by polymer and polymer composite additive manufacturing,” Heat Transf. Eng., vol. 39, no. 19, pp. 1648–1664, Nov. 2018. DOI: 10.1080/01457632.2017.1384280.
  • J. R. McDonough, “A perspective on the current and future roles of additive manufacturing in process engineering, with an emphasis on heat transfer,” Therm. Sci. Eng. Prog., vol. 19, pp. 100594, Oct. 2020. DOI: 10.1016/j.tsep.2020.100594.
  • R. Neugebauer, B. Müller, M. Gebauer, and T. Töppel, “Additive manufacturing boosts efficiency of heat transfer components,” Assem. Autom., vol. 31, no. 4, pp. 344–347, Sep. 2011. DOI: 10.1108/01445151111172925.
  • B. M. Nafis, R. Whitt, A.-C. Iradukunda, and D. Huitink, “Additive manufacturing for enhancing thermal dissipation in heat sink implementation: a review,” Heat Transf. Eng., vol. 42, no. 12, pp. 967–984, May 2021. DOI: 10.1080/01457632.2020.1766246.
  • A. M. Aneesh, A. Sharma, A. Srivastava, K. N. Vyas, and P. Chaudhuri, “Thermal-hydraulic characteristics and performance of 3D straight channel based printed circuit heat exchanger,” Appl. Therm. Eng., vol. 98, pp. 474–482, Apr. 2016. DOI: 10.1016/j.applthermaleng.2015.12.046.
  • H. H. Khan, A. A. M, A. Sharma, A. Srivastava, and P. Chaudhuri, “Thermal-hydraulic characteristics and performance of 3D wavy channel based printed circuit heat exchanger,” Appl. Therm. Eng., vol. 87, pp. 519–528, Aug. 2015. DOI: 10.1016/j.applthermaleng.2015.04.077.
  • A. M. Aneesh, A. Sharma, A. Srivastava, and P. Chaudhury, “Effects of wavy channel configurations on thermal-hydraulic characteristics of printed circuit heat exchanger (PCHE),” Int. J. Heat Mass Transf., vol. 118, pp. 304–315, Mar. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.111.
  • S. Y. Lee, B. G. Park, and J. T. Chung, “Numerical studies on thermal hydraulic performance of zigzag-type printed circuit heat exchanger with inserted straight channels,” Appl. Therm. Eng., vol. 123, pp. 1434–1443, Aug. 2017. DOI: 10.1016/j.applthermaleng.2017.05.198.
  • H. P. Lo, C. H. Hung, and C. C. Wang, “Simulation of velocity distribution and pressure drop in every channel in the printed circuit heat exchanger,” ECS Trans., vol. 57, no. 1, pp. 393–399, Oct. 2013. DOI: 10.1149/05701.0393ecst.
  • J. Figley, X. Sun, S. K. Mylavarapu, and B. Hajek, “Numerical study on thermal hydraulic performance of a printed circuit heat exchanger,” Prog. Nucl. Energy, vol. 68, pp. 89–96, Sep. 2013. DOI: 10.1016/j.pnucene.2013.05.003.
  • T. Ma, L. Li, X.-Y. Xu, Y.-T. Chen, and Q.-W. Wang, “Study on local thermal–hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature,” Energy Convers. Manag., vol. 104, pp. 55–66, Nov. 2015. DOI: 10.1016/j.enconman.2015.03.016.
  • S.-M. Lee and K.-Y. Kim, “Multi-objective optimization of arc-shaped ribs in the channels of a printed circuit heat exchanger,” Int. J. Therm. Sci., vol. 94, pp. 1–8, Aug. 2015. DOI: 10.1016/j.ijthermalsci.2015.02.006.
  • S.-M. Lee, K.-Y. Kim, and S.-W. Kim, “Multi-objective optimization of a double-faced type printed circuit heat exchanger,” Appl. Therm. Eng., vol. 60, no. 1–2, pp. 44–50, Oct. 2013. DOI: 10.1016/j.applthermaleng.2013.06.039.
  • N. Tsuzuki, Y. Kato, and T. Ishiduka, “High performance printed circuit heat exchanger,” Appl. Therm. Eng., vol. 27, no. 10, pp. 1702–1707, Jul. 2007. DOI: 10.1016/j.applthermaleng.2006.07.007.
  • S. H. Yoon, H. C. No, and G. B. Kang, “Assessment of straight, zigzag, S-shape, and airfoil PCHEs for intermediate heat exchangers of HTGRs and SFRs,” Nucl. Eng. Des., vol. 270, pp. 334–343, Apr. 2014. DOI: 10.1016/j.nucengdes.2014.01.006.
  • T. Ishizuka, “Thermal-hydraulic characteristics of a printed circuit heat exchanger in a supercritical CO2 loop,” presented at the Proc. the 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH11), Avignon, France, Oct. 2, 2005.
  • T. L. Ngo, Y. Kato, K. Nikitin, and N. Tsuzuki, “New printed circuit heat exchanger with S-shaped fins for hot water supplier,” Exp. Therm. Fluid Sci., vol. 30, no. 8, pp. 811–819, Aug. 2006. DOI: 10.1016/j.expthermflusci.2006.03.010.
  • C. Oh, E. Kim, R. Shrake, and M. Patterson, Effect of Channel Configurations for Tritium Transfer in Printed Circuit Heat Exchangers. Idaho: Idaho National Laboratory (INL), 2022. [Online]. Available: https://inldigitallibrary.inl.gov/sites/sti/sti/4247215.pdf. Accessed: Jul. 15, 2022.
  • H. Kim, J. I. Lee, and H. C. No, “Thermal hydraulic behavior in the deteriorated turbulent heat transfer regime for a gas-cooled reactor,” Nucl. Eng. Des., vol. 240, no. 4, pp. 783–795, Apr. 2010. DOI: 10.1016/j.nucengdes.2009.11.004.
  • C. Oh, Application of Gamma Code Coupled with Turbomachinery Models for High Temperature Gas-Cooled Reactors. Idaho: Idaho National Laboratory (INL), 2022. [Online]. Available: https://www.osti.gov/biblio/927621. Accessed: Jul. 15, 2022
  • D. E. Kim, M. H. Kim, J. E. Cha, and S. O. Kim, “Numerical investigation on thermal–hydraulic performance of new printed circuit heat exchanger model,” Nucl. Eng. Des., vol. 238, no. 12, pp. 3269–3276, Dec. 2008. DOI: 10.1016/j.nucengdes.2008.08.002.
  • K. Nikitin, Y. Kato, and L. Ngo, “Printed circuit heat exchanger thermal–hydraulic performance in supercritical CO2 experimental loop,” Int. J. Refrig., vol. 29, no. 5, pp. 807–814, Aug. 2006. DOI: 10.1016/j.ijrefrig.2005.11.005.
  • S.-M. Lee and K.-Y. Kim, “Optimization of zigzag flow channels of a printed circuit heat exchanger for nuclear power plant application,” J. Nucl. Sci. Technol., vol. 49, no. 3, pp. 343–351, Feb. 2012. DOI: 10.1080/00223131.2012.660012.
  • K. Natesan, A. Moisseytsev, and S. Majumdar, “Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design,” J. Nucl. Mater., vol. 392, no. 2, pp. 307–315, Jul. 2009. DOI: 10.1016/j.jnucmat.2009.03.019.
  • L.-H. Tang, B.-H. Yang, J. Pan, and B. Sundén, “Thermal performance analysis in a zigzag channel printed circuit heat exchanger under different conditions,” Heat Transf. Eng., vol. 43, no. 7, pp. 567–583, Mar. 2022. DOI: 10.1080/01457632.2021.1896832.
  • L.-H. Tang, J. Pan, and B. Sundén, “Investigation on thermal-hydraulic performance in a printed circuit heat exchanger with airfoil and vortex generator fins for supercritical liquefied natural gas,” Heat Transf. Eng., vol. 42, no. 10, pp. 803–823, Apr. 2021. DOI: 10.1080/01457632.2020.1744244.
  • S.-M. Lee and K.-Y. Kim, “A parametric study of the thermal-hydraulic performance of a zigzag printed circuit heat exchanger,” Heat Transf. Eng., vol. 35, no. 13, pp. 1192–1200, Feb. 2014. DOI: 10.1080/01457632.2013.870004.
  • C. İ. Çalışkan et al., “Efficiency research of conformal channel geometries produced by additive manufacturing in plastic injection mold cores (inserts) used in automotive industry,” 3D Print. Addit. Manuf, Dec. 2021. DOI: 10.1089/3dp.2021.0062.
  • EOS, “Design rules for DMLS,” EOS GmbH - Electro Optical Systems, München, Germany, 2022. [Online]. Available: https://www.3dimpuls.com/sites/default/files/download/dmls_design-rules_en.pdf. Accessed: Jul. 15, 2022.
  • C. İ. Çalışkan et al., “Investigation of manufacturability and efficiency of micro channels with different geometries produced by direct metal laser sintering,” Int. J. Adv. Manuf. Technol., vol. 117, no. 11–12, pp. 3805–3817, Sep. 2021. DOI: 10.1007/s00170-021-07928-0.
  • Crucible, Design Guidelines for Direct Metal Laser Sintering (DMLS). UK: Crucible Design Ltd. , 2022. [Online]. Available: https://www.crucibledesign.co.uk/images/uploaded/guides/bs7000-part-2-a-management-guide-download-original.pdf. Accessed: Jul. 15, 2022.
  • Q. Han et al., “Manufacturability of AlSi10Mg overhang structures fabricated by laser powder bed fusion,” Mater. Des., vol. 160, pp. 1080–1095, Dec. 2018. DOI: 10.1016/j.matdes.2018.10.043.
  • F. Ceccanti, A. Giorgetti, and P. Citti, “A support structure design strategy for laser powder bed fused parts,” Procedia Struct. Integr., vol. 24, pp. 667–679, Jan. 2019. DOI: 10.1016/j.prostr.2020.02.059.
  • B. B. Ravichander et al., “Cost-aware design and fabrication of new support structures in laser powder bed fusion: microstructure and metallurgical properties,” Appl. Sci., vol. 11, no. 21, pp. 10127, Oct. 2021. DOI: 10.3390/app112110127.
  • EOS, “EOS aluminium AlSi10Mg material data sheet,” EOS GmbH – Electro Optical Systems, München, Germany, 2022. [Online]. Available: https://www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/aluminium/material_datasheet_eos_aluminium-alsi10mg_en_web.pdf. Accessed: Jul. 15, 2022.
  • F. Incorporated, ANSYS FLUENT 12.0 Theory Guide. Pennsylvania: Ansys, Inc., 2022. [Online]. Available: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm. Accessed: Jul. 15, 2022.
  • ANSYS Fluent User’s Guide. Pennsylvania: Ansys, Inc., 2022. [Online]. Available: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm. Accessed: Jul. 15, 2022.
  • F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, Aug. 1994. DOI: 10.2514/3.12149.
  • W. Vieser, T. Esch, and F. Menter, Heat Transfer Predictions Using Advanced Two-Equation Turbulence Models. Pennsylvania: Ansys CFX Inc., CFX Tech. Memo, Jun. 2002. Available: https://www.docin.com/p-106537284.html. Accessed: Jul. 15, 2022.
  • M. Bošnjaković, S. Muhič, and A. Čikić, “Experimental testing of the heat exchanger with star-shaped fins,” Int. J. Heat Mass Transf., vol. 149, pp. 119190, Mar. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119190.
  • P. S. S. Kabelac, M. Kind, H. Martin, D. Mewes, and K. Schaber, VDI-Wärmeatlas, 11th ed. Heidelberg, Berlin, Germany: Springer-Verlag, 2013, pp. 1053–1080.
  • M. Bošnjaković, A. Čikić, S. Muhič, and M. Stojkov, “Tube heat exchanger with new star shaped fins,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 393, pp. 012071, Jun. 2018. DOI: 10.1088/1757-899X/393/1/012071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.