1,070
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Study of the Effect of the Reduced Pressure on a Mechanistic Heat Transfer Model for Flow Boiling of CO2 in Macroscale and Microscale Tubes

&
Pages 1657-1670 | Received 06 May 2022, Accepted 13 Jun 2022, Published online: 11 Nov 2022

References

  • M. H. Kim, J. Pettersen, and C. W. Bullard, “Fundamental process and system design issues in CO2 vapor compression systems,” Prog. Energy Combust. Sci., vol. 30, no. 2, pp. 119–174, 2004. DOI: 10.1016/j.pecs.2003.09.002.
  • J. R. Thome and G. Ribatski, “State-of-the-art of two-phase flow and flow boiling heat transfer and pressure drop of CO2 in macro- and micro-channels,” Int. J. Refrig., vol. 28, no. 8, pp. 1149–1168, 2005. DOI: 10.1016/j.ijrefrig.2005.07.005.
  • J. Pettersen, “Two phase flow patterns in microchannel vaporization of CO2 at near-critical pressure,” Heat Transfer Eng., vol. 25, no. 3, pp. 52–60, 2004. DOI: 10.1080/01457630490280100.
  • L. Cheng, G. Xia, and J. R. Thome, “Flow boiling heat transfer and two-phase flow phenomena of CO2 in macro- and micro-channel evaporators: fundamentals, applications and engineering design,” Appl. Therm. Eng., vol. 195, no. 170770, 2021. DOI: 10.1016/j.applthermaleng.2021.117070.
  • L. Cheng, G. Xia, and Q. Li, “CO2 evaporation process modelling: fundamentals and engineering applications,” Heat Transfer Eng., vol. 43, no. 8–10, pp. 1–28, 2022. DOI: 10.1080/01457632.2021.1905297.
  • L. Cheng and J. R. Thome, “Cooling of microprocessors using flow boiling of CO2 in micro-evaporators: preliminary analysis and performance comparison,” Appl. Therm. Eng., vol. 29, no. 1112, pp. 2426–2432, 2009. DOI: 10.1016/j.applthermaleng.2008.12.019.
  • L. Cheng, G. Ribatski, and J. R. Thome, “Analysis of supercritical CO2 cooling in macro- and micro-channels,” Int. J. Refrig., vol. 31, no. 8, pp. 1301–1316, 2008. DOI: 10.1016/j.ijrefrig.2008.01.010.
  • L. Cheng, “Evaluation of correlations for supercritical CO2 cooling convective heat transfer and pressure drop in macro- and micro-scale tubes,” Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom., vol. 5, no. 2, pp. 113–126, 2014.
  • L. Cheng and G. Xia, “Flow boiling heat transfer and two-phase flow of carbon dioxide: fundamentals, mechanistic models and applications,” Proc. the 4th World Congr. Momentum, Heat Mass Transfer (MHMT'19) Rome, Italy, Apr. 10–12, 2019. DOI: 10.11159/icmfht19.2.
  • J. Patiño et al., “A comparative analysis of a CO2 evaporator model using experimental heat transfer correlations and a flow pattern map,” Int. J. Heat Mass Transfer, vol. 71, pp. 361–375, Apr. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.027.
  • S. Yamaguchi, D. Kato, K. Saito, and S. Kawai, “Development and validation of static simulation model for CO2 heat pump,” Int. J. Heat Mass Transfer, vol. 54, no. 910, pp. 1896–1906, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.01.013.
  • S. G. Kandlikar, “A roadmap for implementing minichannels in refrigeration and air-conditioning systems - current status and future directions,” Heat Transfer Eng., vol. 28, no. 12, pp. 973–985, 2007. DOI: 10.1080/01457630701483497.
  • S. G. Kandlikar, “Fundamental issues related to flow boiling in minichannels and microchannels,” Exp. Therm. Fluid Sci., vol. 26, no. 24, pp. 389–407, 2002. DOI: 10.1016/S0894-1777(02)00150-4.
  • L. Cheng and D. Mewes, “Review of two-phase flow and flow boiling of mixtures in small and mini channels,” Int. J. Multiphase Flow, vol. 32, no. 2, pp. 183–207, 2006. DOI: 10.1016/j.ijmultiphaseflow.2005.10.001.
  • J. R. Thome, L. Cheng, G. Ribatski, and L. F. Vales, “Flow boiling of ammonia and hydrocarbons: a state-of-the-art review,” Int. J. Refrig., vol. 31, no. 4, pp. 603–620, 2008. DOI: 10.1016/j.ijrefrig.2007.11.010.
  • L. Cheng and T. Cheng, “Comparison of six typical correlations for upward flow boiling heat transfer with kerosene in a vertical smooth tube,” Heat Transfer Eng., vol. 21, no. 5, pp. 27–34, 2000. DOI: 10.1080/01457630050127928.
  • L. Cheng and D. Xia, “Fundamental issues, mechanisms and models of flow boiling heat transfer in microscale channels,” Int. J. Heat Mass Transfer, vol. 108, pp. 97–127, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.003.
  • L. Cheng, “Fundamental issues of critical heat flux phenomena during flow boiling in microscale-channels and nucleate pool boiling in confined spaces,” Heat Transfer Eng., vol. 34, no. 13, pp. 1011–1043, 2013. DOI: 10.1080/01457632.2013.763538.
  • L. Cheng, “Microscale flow patterns and bubble growth in microchannels,” in Microchannel Phase Change Heat Transfer, Sujoy Kumar Saha, Ed. Butterworth-Heinemann, Oxford, UK: Elsevier Publisher, 2016, pp. 91–140. DOI: 10.1016/B978-0-12-804318-9.00003-0.
  • L. Cheng, “Flow boiling heat transfer with models in microchannels,” in Microchannel Phase Change Heat Transfer, Sujoy Kumar Saha, Ed. Elsevier Publisher, 2016, pp. 141–191. DOI: 10.1016/B978-0-12-804318-9.00004-2.
  • L. Cheng, G. Ribatski, and J. R. Thome, “Two-phase flow patterns and flow pattern maps: fundamentals and applications,” ASME Appl. Mech. Rev., vol. 61, no. 5, article no. 50802, p. 28, Sept. 2008. DOI: 10.1115/1.2955990.
  • G. Xia, B. Cai, L. Cheng, and Z. Wang, “Flow regime visualization and identification of air–water two-phase flow in a horizontal helically coiled rectangular channel,” Heat Transfer Eng., vol. 43, no. 8–10, pp. 1–19, 2022. DOI: 10.1080/01457632.2021.1905313.
  • L. Cheng, G. Ribatski, L. Wojtan, and J. R. Thome, “New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes,” Int. J. Heat Mass Transfer, vol. 49, no. 2122, pp. 4082–4094, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.04.003.
  • L. Cheng, G. Ribatski, L. Wojtan, and J. R. Thome, “Erratum to: new flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside tubes, [Heat Mass Transfer 49 (21-22) (2006) 4082-4094],” Int. J. Heat Mass Transfer, vol. 50, no. 12, pp. 391, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.07.033.
  • L. Cheng, G. Ribatski, J. Moreno Quibén, and J. R. Thome, “New prediction methods for CO2 evaporation inside tubes: part I - a general two-phase flow pattern map and development of a phenomenological model of two-phase flow frictional pressure drop,” Int. J. Heat Mass Transfer, vol. 51, no. 12, pp. 111–124, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.04.002.
  • L. Cheng, G. Ribatski, and J. R. Thome, “New prediction methods for CO2 evaporation inside tubes: part II - a general flow boiling heat transfer model based on flow patterns,” Int. J. Heat Mass Transfer, vol. 51, no. 12, pp. 125–135, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.04.001.
  • J. Moreno Quibén, L. Cheng, R. J. da Silva Lima, and J. R. Thome, “Flow boiling in horizontal flattened tubes: part I — two-phase frictional pressure drops results and model,” Int. J. Heat Mass Transfer, vol. 52, no. 1516, pp. 3634–3644, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.12.032.
  • J. Moreno Quibén, L. Cheng, R. J. da Silva Lima, and J. R. Thome, “Flow boiling in horizontal flattened tubes: part II — flow boiling heat transfer results and model,” Int. J. Heat Mass Transfer, vol. 52, no. 1516, pp. 3645–3653, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.12.033.
  • L. Cheng, G. Ribatski– and J. R. Thome, “On the prediction of flow boiling heat transfer of CO2,” The 22nd IIR Int. Congr. Refrig., Beijing, P.R. China, Aug. 21–26, 2007.
  • REFPROP. NIST Refrigerant Properties Database 23. Gaithersburg, MD, 1998, Version 6.01.
  • REFPROP. NIST Refrigerant Properties Database 23. Gaithersburg, MD, 2002, Version 7.0.
  • REFPROP. NIST Refrigerant Properties Database 23. Gaithersburg, MD, 2013, Version 9.1.
  • EES, Engineering Equation Solver, Wisconsin: F-Chart MdthaSoftware Inc., 2005.
  • J. J. Cho and M. S. Kim, “Experimental studies on the evaporative heat transfer and pressure drop of CO2 in smooth and micro-fin tubes of the diameters of 5 and 9.52mm,” “Int. J. Refrig., vol. 30, no. 6, pp. 986–994, 2007. DOI: 10.1016/j.ijrefrig.2007.01.007.
  • X. Zhao and P. K. Bansal, “Experimental investigation on flow boiling heat transfer of CO2 at low temperatures,” Heat Transfer Eng, vol. 30, no. 12, pp. 2–11, 2009. DOI: 10.1080/01457630802289850.
  • X. Zhao and P. K. Bansal, “Flow boiling heat transfer characteristics of CO2 at low temperatures,” Int. J. Refrig., vol. 30, no. 6, pp. 937–945, 2007. DOI: 10.1016/j.ijrefrig.2007.02.010.
  • C. Y. Park and P. S. Hrnjak, “Flow boiling heat transfer of CO2 at low temperatures in a horizontal smooth tube,” J. Heat Transfer, vol. 127, no. 12, pp. 1305–1312, 2005. DOI: 10.1115/1.2098853.
  • S. Grauso, R. Mastrullo, A. W. Mauro, and G. P. Vanoli, “Flow boiling of R410A and CO2 from low to medium reduced pressures in macro channels: experiments and assessment of prediction methods,” Int. J. Heat Mass Transfer, vol. 56, no. 12, pp. 107–118, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.09.015.
  • H.-K. Oh and C.-H. Son, “Flow boiling heat transfer and pressure drop characteristics of CO2 in horizontal tube of 4.57-mm inner diameter,” Appl. Therm. Eng., vol. 31, no. 23, pp. 163–172, 2011. DOI: 10.1016/j.applthermaleng.2010.08.026.
  • S. Grauso, R. Mastrullo, A. W. Mauro, and G. P. Vanoli, “CO2 and propane blends: experiments and assessment of predictive methods for flow boiling in horizontal tubes,” Int. J. Refrig., vol. 34, no. 4, pp. 1026–11039, 2011. DOI: 10.1016/j.ijrefrig.2011.03.001.
  • R. Mastrullo, A. W. Mauro, A. Rosato, and G. P. Vanoli, “Carbon dioxide heat transfer coefficients and pressure drops during flow boiling: assessment of predictive methods,” Int. J. Refrig, vol. 33, no. 6, pp. 1068–1085, 2010. DOI: 10.1016/j.ijrefrig.2010.04.005.
  • R. Mastrullo, A. W. Mauro, A. Rosato, and G. P. Vanoli, “Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube,” Int. J. Heat Mass Transfer, vol. 52, no. 19–20, pp. 4189–4194, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.04.004.
  • K.-I. Choi, A. S. Pamitran, C.-Y. Oh, and J.-T. Oh, “Boiling heat transfer of R-22, R-134a, and CO2 in horizontal smooth minichannels,” Int. J. Refrig., vol. 30, no. 8, pp. 1336–1346, 2007. DOI: 10.1016/j.ijrefrig.2007.04.007.
  • M. Ozawa et al., “Flow pattern and boiling heat transfer of CO2 in horizontal small-bore tubes,” Int. J. Multiphase Flow, vol. 35, no. 8, pp. 699–709, 2009. DOI: 10.1016/j.ijmultiphaseflow.2009.04.003.
  • M. Ducoulombier, S. Colasson, J. Bonjour, and P. Haberschill, “Carbon dioxide flow boiling in a single microchannel – part II: heat transfer,” Exp. Therm. Fluid Sci., vol. 35, no. 4, pp. 597–611, 2011. DOI: 10.1016/j.expthermflusci.2010.11.014.
  • J. Wu et al., “Investigation of heat transfer and pressure drop of CO2 two-phase flow in a horizontal minichannel,” Int. J. Heat Mass Transfer, vol. 54, no. 910, pp. 2154–2162, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.12.009.
  • L. Jiang, J. Liu, L. Zhang, Q. Liu, and X. Xu, “Characteristics of heat transfer for CO2 flow boiling at low temperature in mini-channel,” Int. J. Heat Mass Transfer, vol. 108, pp. 2120–2129, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.113.
  • L. Jiang, J. Liu, L. Zhang, Q. Liu, and X. Xu, “A research on the dryout characteristics of CO2’S flow boiling heat transfer process in mini-channels,” Int. J. Heat Mass Transfer, vol. 83, pp. 131–142, Nov. 2017. DOI: 10.1016/j.ijrefrig.2017.07.017.
  • L. Zhang, L. Jiang, J. Liu, and Y. Zhao, “Investigation of flow boiling heat transfer characteristics of CO2 in horizontal mini-tube,” Int. J. Therm. Sci., vol. 138, pp. 109–115, 2019. DOI: 10.1016/j.ijthermalsci.2018.11.032.
  • K. Keniar, F. Mazzelli, and S. Garimella, “Experimental investigation of carbon dioxide flow boiling in a single microchannel,” Int. J. Heat Mass Transfer, vol. 159, no. 120100, Oct. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120100.
  • G. Xia, B. Cai, L. Cheng, Z. Wang, and Y. Jia, “Experimental study and modeling of average void fraction of gas-liquid two-phase flow in a horizontal helically coiled rectangular channel,” Exp. Therm. Fluid Sci., vol. 94, pp. 9–22, Jun. 2018. DOI: 10.1016/j.expthermflusci.2018.01.027.
  • Y. Lv, G. Xia, L. Cheng, and D. Ma, “Experimental study on the pressure drop oscillation characteristics of the flow boiling instability with FC-72 in parallel rectangle microchannels,” Int. Comm. Heat Mass Transfer, vol. 108, no. 104289, Nov. 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104289.
  • Y. Lv, G. Xia, L. Cheng, and D. Ma, “Experimental investigation into unstable two-phase flow phenomena during flow boiling in multi-microchannels,” Int. J. Therm. Sci., vol. 166, no. 106985, Aug. 2021. DOI: 10.1016/j.ijthermalsci.2021.106985.
  • G. Xia, Y. Lv, L. Cheng, D. Ma, and Y. Jia, “Experimental study and dynamic simulation of the continuous two phase instable boiling in multiple parallel microchannels,” Int. J. Heat Mass Transfer, vol. 138, pp. 961–984, Aug. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.124.
  • G. Xia, Y. Cheng, L. Cheng, and Y. Li, “Heat transfer characteristics and flow visualization during flow boiling of acetone in semi-open multi-microchannels,” Heat Transfer Eng., vol. 40, no. 16, pp. 1349–1362, 2019. DOI: 10.1080/01457632.2018.1470296.