876
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

High Heat Flux Cooling Technologies Using Microchannel Evaporators: Fundamentals and Challenges

&
Pages 1470-1497 | Received 08 May 2022, Accepted 16 May 2022, Published online: 07 Nov 2022

References

  • L. Cheng and G. Xia, “Fundamental issues, mechanisms and models of flow boiling heat transfer in microscale channels,” Int. J. Heat Mass Transf., vol. 108, no. Part A, pp. 97–127, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.003.
  • I. Mudawar, “Assessment of high-heat-flux thermal management schemes,” IEEE Trans. Comp. Packag. Technol., vol. 24, no. 2, pp. 122–141, 2001. DOI: 10.1109/6144.926375.
  • S. G. Kandlikar, “A roadmap for implementing minichannels in refrigeration and air-conditioning systems – current status and future directions,” Heat Transfer Eng., vol. 28, no. 12, pp. 973–985, 2007. DOI: 10.1080/01457630701483497.
  • B. Agostini, et al., “State of the art of high heat flux cooling technologies,” Heat Transfer Eng., vol. 28, no. 4, pp. 258–281, 2007. DOI: 10.1080/01457630601117799.
  • T. A. Shedd, “Next generation spray cooling: high heat flux management in compact spaces,” Heat Transfer Eng., vol. 28, no. 2, pp. 87–92, 2007. DOI: 10.1080/0145763060102324.
  • T. G. Karayiannis and M. M. Mahmoud, “Flow boiling in microchannels: fundamentals and applications,” Appl. Therm. Eng., vol. 115, pp. 1372–1397, 2017. DOI: 10.1016/j.applthermaleng.2016.08.063.
  • L. Cheng, “Microscale and nanoscale thermal and fluid transport phenomena: rapidly developing research fields,” Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom., vol. 1, no. 1, pp. 3–6, 2010.
  • S. G. Kandlikar, “Fundamental issues related to flow boiling in minichannels and microchannels,” Exp. Therm. Fluid Sci., vol. 26, no. 2-4, pp. 389–407, 2002. DOI: 10.1016/S0894-1777(02)00150-4.
  • L. Cheng, “Fundamental issues of critical heat flux phenomena during flow boiling in microscale-channels and nucleate pool boiling in confined spaces,” Heat Transfer Eng., vol. 34, no. 13, pp. 1011–1043, 2013. DOI: 10.1080/01457632.2013.763538.
  • J. S. Lee, et al., “Low-temperature two-phase microchannel cooling for high-heat-flux thermal management of defense electronics,” IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 453–460, 2009. DOI: 10.1109/TCAPT.2008.2005783.
  • L. Cheng and D. Mewes, “Review of two-phase flow and flow boiling of mixtures in small and mini channels,” Int. J. Multiphase Flow, vol. 32, no. 2, pp. 183–207, 2006. DOI: 10.1016/j.ijmultiphaseflow.2005.10.001.
  • L. Cheng, G. Xia, Q. Li and J. R. Thome, “Fundamental issues, technology development, and challenges of boiling heat transfer, critical heat flux, and two-phase flow phenomena with nanofluids,” Heat Transfer Eng., vol. 40, no. 16, pp. 1301–1336, 2019. DOI: 10.1080/01457632.2018.1470285.
  • L. Cheng, G. Xia and J. R. Thome, “Flow boiling heat transfer and two-phase flow phenomena of CO2 in macro- and micro-channel evaporators: fundamentals, applications and engineering design,” Appl. Therm. Eng., vol. 195, pp. 117070, Aug. 2021. DOI: 10.1016/j.applthermaleng.2021.117070.
  • S. Szczukiewicz, M. Magnini and J. R. Thome, “Proposed models, ongoing experiments, and latest numerical simulations of microchannel two-phase flow boiling,” Int. J. Multiphase Flow, vol. 59, pp. 84–101, Feb. 2014. DOI: 10.1016/j.ijmultiphaseflow.2013.10.014.
  • J. R. Thome, L. Cheng, G. Ribatski and L. F. Vales, “Flow boiling of ammonia and hydrocarbons: a state-of-the-art review,” Int. J. Refrig., vol. 31, no. 4, pp. 603–620, 2008. DOI: 10.1016/j.ijrefrig.2007.11.010.
  • Z. Guo, et al., “Heat transfer enhancement − a brief review of literature in 2020 and prospects,” Heat Trans Res., vol. 52, no. 10, pp. 65–92, 2021. DOI: 10.1615/HeatTransRes.2021038770.
  • Z. Guo, “Heat transfer enhancement − a brief review of 2018 literature,” J. Enhanc. Heat Transf., vol. 26, no. 5, pp. 429–449, 2019. DOI: 10.1615/JEnhHeatTransf.2019031660.
  • L. Cheng, E. P. Bandarra Filho and J. R. Thome, “Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges,” J. Nanosci. Nanotechnol., vol. 8, no. 7, pp. 3315–3332, 2008. DOI: 10.1166/jnn.2008.413.
  • Z. Guo, “A review on heat transfer enhancement with nanofluids,” J. Enhanc. Heat Transf., vol. 27, no. 1, pp. 1–70, 2020. DOI: 10.1615/JEnhHeatTransf.2019031575.
  • L. Cheng and L. Liu, “Boiling and two-phase flow phenomena of refrigerant-based nanofluids: fundamentals, applications and challenges,” Int. J. Refrig., vol. 36, no. 2, pp. 421–446, 2013. DOI: 10.1016/j.ijrefrig.2012.11.010.
  • G. Xia, M. Du, L. Cheng and W. Wang, “Experimental study on the nucleate boiling heat transfer characteristics of a water-based multi-walled carbon nanotubes nanofluid in a confined space,” Int. J. Heat Mass Transf., vol. 113, pp. 59–69, Oct. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.021.
  • L. Cheng, “Flow patterns and bubble growth in microchannels,” in Microchannel Phase Change Heat Transfer, S. K. Saha, Ed., Elsevier, pp. 91–140., 2016, DOI: 10.1016/B978-0-12-804318-9.00003-0.
  • L. Cheng, “Flow boiling heat transfer with models in microchannels,” in Microchannel Phase Change Heat Transfer, S. K. Saha, Ed. Elsevier, 2016, pp. 141–191. DOI: 10.1016/B978-0-12-804318-9.00004-2.
  • L. Cheng, G. Ribatski and J. R. Thome, “Two-phase flow patterns and flow pattern maps: fundamentals and applications,” ASME Appl. Mech. Rev., vol. 61, no. 5, article no. 50802, pp. 28, Sep. 2008. DOI: 10.1115/1.2955990.
  • P. A. Kew and K. Cornwell, “Correlations for the prediction of boiling heat transfer in small-diameter channels,” Appl. Therm. Eng, vol. 17, no. 8–10, pp. 705–715, 1997. DOI: 10.1016/S1359-4311(96)00071-3.
  • S. S. Mehendale, A. M. Jacobi and R. K. Shah, “Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design,” ASME Appl. Mech. Rev., vol. 53, no. 7, pp. 175–193, 2000. DOI: 10.1115/1.3097347.
  • L. Cheng, G. Ribatski, L. Wojtan and J. R. Thome, “New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes,” Int. J. Heat Mass Transf., vol. 49, no. 21–22, pp. 4082–4094, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.04.003.
  • L. Cheng, G. Ribatski, J. Moreno Quibén and J. R. Thome, “New prediction methods for CO2 evaporation inside tubes: part I – a general two-phase flow pattern map and development of a phenomenological model of two-phase flow frictional pressure drop,” Int. J. Heat Mass Transf., vol. 51, no. 1–2, pp. 111–124, 2008. DOI: 10.1016/j.ijheatmasstransfer.2012.05.044.
  • L. Cheng, G. Ribatski and J. R. Thome, “New prediction methods for CO2 evaporation inside tubes: part II – a general flow boiling heat transfer model based on flow patterns,” Int. J. Heat Mass Transf., vol. 51, no. 1–2, pp. 125–135, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.04.001.
  • J. Moreno Quibén, L. Cheng, R. J. da Silva Lima and J. R. Thome, “Flow boiling in horizontal flattened tubes: part I – two-phase frictional pressure drop results and model,” Int. J. Heat Mass Transf., vol. 52, no. 15–16, pp. 3634–3644, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.12.032.
  • J. Moreno Quibén, L. Cheng, R. J. da Silva Lima and J. R. Thome, “Flow boiling in horizontal flattened tubes: part II – flow boiling heat transfer results and model,” Int. J. Heat Mass Transf., vol. 52, no. 15–16, pp. 3645–3653, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.12.033.
  • L. Cheng, G. Xia and Q. Li, “CO2 evaporation process modelling: fundamentals and engineering applications,” Heat Transf. Eng., vol. 43, no. 8–10, pp. 1–28, 2022. DOI: 10.1080/01457632.2021.1905297.
  • L. Cheng and G. Xia, “Flow boiling heat transfer and two-phase flow of carbon dioxide: fundamentals, mechanistic models and applications,” Proc. the 4th World Congr. Momentum, Heat Mass Transfer (MHMT'19), Rome, Italy, April 10–12, 2019. DOI: 10.11159/icmfht19.2.
  • L. Cheng and J. R. Thome, “Cooling of microprocessors using flow boiling of CO2 in micro-evaporators: preliminary analysis and performance comparison,” Appl. Therm. Eng., vol. 29, no. 11–12, pp. 2426–2432, 2009. DOI: 10.1016/j.applthermaleng.2008.12.019.
  • G. R. Warrier, V. K. Dhir and L. A. Momoda, “Heat transfer and pressure drop in narrow rectangular channels,” Exp. Therm. Fluid Sci., vol. 26, no. 1, pp. 53–64, 2002. DOI: 10.1016/S0894-1777(02)00107-3.
  • W. Qu and I. Mudawar, “Flow boiling heat transfer in two-phase micro-channels heat sinks – I. Experimental investigation and assessment of correlation methods,” Int. J. Heat Mass Transf., vol. 46, no. 15, pp. 2755–2771, 2003. DOI: 10.1016/S0017-9310(03)00041-3.
  • W. Qu and I. Mudawar, “Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks,” Int. J. Heat Mass Transf., vol. 47, no. 10-11, pp. 2045–2059, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.12.006.
  • G. Wang, P. Cheng and A. E. Bergles, “Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels,” Int. J. Heat Mass Transf., vol. 51, no. 9–10, pp. 2267–2281, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.08.027.
  • J. Lee and I. Mudawar, “Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: part II –heat transfer characteristics,” Int. J. Heat Mass Transf., vol. 48, no. 5, pp. 941–955, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.09.018.
  • T. Harirchian and S. V. Garimella, “Microchannel size effects on local flow boiling heat transfer to a dielectric fluid,” Int. J. Heat Mass Transf., vol. 51, no. 15–16, pp. 3724–3735, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.03.013.
  • T. Harirchian and S. V. Garimella, “Effects of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannels,” Int. J. Multiphase Flow, vol. 35, no. 4, pp. 349–362, Apr. 2009. DOI: 10.1016/j.ijmultiphaseflow.2009.01.003.
  • T. Chen and S. V. Garimella, “Measurements and high-speed visualization of flow boiling of a dielectric fluid in a silicon microchannel heat sink,” Int. J. Multiphase Flow, vol. 32, no. 8, pp. 957–971, 2006. DOI: 10.1016/j.ijmultiphaseflow.2006.03.002.
  • T. Chen and S. V. Garimella, “Flow boiling heat transfer to a dielectric coolant in a microchannel heat sink,” IEEE Trans. Comp. Packag. Technol., vol. 30, no. 1, pp. 24–31, 2007. DOI: 10.1109/TCAPT.2007.892063.
  • G. Hetsroni, A. Mosyak, Z. Segal and G. Ziskind, “A uniform temperature heat sink for cooling of electronic devices,” Int. J. Heat Mass Transf., vol. 45, no. 16, pp. 3275–3286, 2002. DOI: 10.1016/S0017-9310(02)00048-0.
  • L. Jiang, M. Wong and Y. Zohar, “Phase change in microchannel heat sinks with integrated temperature sensors,” J. Microelectromech. Syst., vol. 8, no. 4, pp. 358–365, 1999. DOI: 10.1109/84.809049.
  • Y. K. Prajapati and P. Bhandari, “Flow boiling instabilities in microchannels and their promising solutions – a review,” Exp. Therm. Fluid Sci., vol. 88, pp. 576–593, Nov. 2017. DOI: 10.1016/j.expthermflusci.2017.07.014.
  • G. Ribatski, L. Wojtan and J. R. Thome, “An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels,” Exp. Therm. Fluid Sci., vol. 31, no. 1, pp. 1–19, Oct. 2006. DOI: 10.1016/j.expthermflusci.2006.01.006.
  • C. B. Tibirica and G. Ribatski, “Flow boiling in micro-scale channels – synthesized literature review,” Int. J. Refrig., vol. 36, no. 2, pp. 301–324, 2013. DOI: 10.1016/j.ijrefrig.2012.11.019.
  • S. Lee and I. Mudawar, “Investigation of flow boiling in large micro-channel heat exchangers in a refrigeration loop for space applications,” Int. J. Heat Mass Transf., vol. 97, pp. 110–129, Jun. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.01.072.
  • B. Agostini, et al., “High heat flux flow boiling in silicon multi-microchannels – part I: heat transfer characteristics of refrigerant R236fa,” Int. J. Heat Mass Transf., vol. 51, no. 21–22, pp. 5400–5414, Oct. 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.03.006.
  • B. Agostini, et al., “High heat flux flow boiling in silicon multi-microchannels – part II: heat transfer characteristics of refrigerant R245fa,” Int. J. Heat Mass Transf., vol. 51, no. 21–22, pp. 5415–5425, Oct. 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.03.007.
  • B. Agostini, et al., “High heat flux flow boiling in silicon multi-microchannels – part III: saturated critical heat flux of R236fa and two-phase pressure drops,” Int. J. Heat Mass Transf., vol. 51, no. 21–22, pp. 5426–5442, Oct. 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.03.005.
  • J. Park and J. R. Thome, “Critical heat flux in multi-microchannel copper elements with low pressure refrigerants,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 110–122, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.09.047.
  • A. W. Mauro, J. R. Thome, D. Toto and G. P. Vanoli, “Saturated critical heat flux in a multi-microchannel heat sink fed by a split flow system,” Exp. Therm. Fluid Sci., vol. 34, no. 1, pp. 81–92, 2010. DOI: 10.1016/j.expthermflusci.2009.09.005.
  • S. Lee and I. Mudawar, “Transient characteristics of flow boiling in large micro-channel heat exchangers,” Int. J. Heat Mass Transf., vol. 103, pp. 186–202, Dec. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.07.040.
  • S. Lee, V. S. Devahdhanush and I. Mudawar, “Investigation of subcooled and saturated boiling heat transfer mechanisms, instabilities, and transient flow regime maps for large length-to-diameter ratio micro-channel heat sinks,” Int. J. Heat Mass Transf., vol. 123, pp. 172–191, Aug. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.020.
  • H. Huang and J. R. Thome, “Local measurements and a new flow pattern based model for subcooled and saturated flow boiling heat transfer in multi-microchannel evaporators,” Int. J. Heat Mass Transf., vol. 103, pp. 701–714, Dec. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.07.074.
  • H. Huang, L. Pan and R. Yan, “Flow characteristics and instability analysis of pressure drop in parallel multiple microchannels,” Appl. Therm. Eng., vol. 142, pp. 184–193, Sep. 2018. DOI: 10.1016/j.applthermaleng.2018.06.083.
  • E. M. Fayyadh, M. M. Mahmoud, K. Sefiane and T. G. Karayiannis, “Flow boiling heat transfer of R134a in multi microchannels,” Int. J. Heat Mass Transf., vol. 110, pp. 422–436, Jul. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.057.
  • Y. Lv, G. Xia, L. Cheng and D. Ma, “Experimental investigation into unstable two-phase flow phenomena during flow boiling in multi-microchannels,” Int. J. Therm. Sci., vol. 166, pp. 106985, Aug. 2021. DOI: 10.1016/j.ijthermalsci.2021.106985.
  • G. Xia, Y. Lv, L. Cheng, D. Ma and Y. Jia, “Experimental study and dynamic simulation of the continuous two phase instable boiling in multiple parallel microchannels,” Int. J. Heat Mass Transf., vol. 138, pp. 961–984, Aug. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.124.
  • Y. Lv, G. Xia, L. Cheng and D. Ma, “Experimental study on the pressure drop oscillation characteristics of the flow boiling instability with FC-72 in parallel rectangle microchannels,” Int. Commun. Heat Mass Transf., vol. 108, pp. 104289, Nov. 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104289.
  • M. R. Özdemir, M. M. Mahmoud and T. G. Karayiannis, “Flow boiling of water in a rectangular metallic microchannel,” Heat Transf. Eng., vol. 42, no. 6, pp. 492–516, 2021., DOI: 10.1080/01457632.2019.1707390.
  • G. Hedau, P. Dey, R. Raj and S. K. Saha, “Combined effect of inlet restrictor and nanostructure on two-phase flow performance of parallel microchannel heat sinks,” Int. J. Therm. Sci, vol. 153, pp. 106339, Jul. 2020. DOI: 10.1016/j.ijthermalsci.2020.106339.
  • R. Diaz and Z. Guo, “Enhanced conduction and pool boiling heat transfer on single-layer graphene-coated substrates,” J. Enhanc. Heat Transf., vol. 26, no. 2, pp. 127–143, 2019. DOI: 10.1615/JEnhHeatTransf.2018028488.
  • S. K. Nayak and P. C. Mishra, “Enhanced heat transfer from hot surface by nanofluid based ultrafast cooling: an experimental investigation,” J. Enhanc. Heat Transf., vol. 26, no. 4, pp. 415–428, 2019. DOI: 10.1615/JEnhHeatTransf.2019028238.
  • H. Kubo, H. Takamatsu and H. Honda, “Effects of size and number density of micro-reentrant cavities on boiling heat transfer from a silicon chip immersed in degassed and gas-dissolved FC-72,” J. Enhanc. Heat Transf., vol. 6, no. 2–4, pp. 151–160, 1999. DOI: 10.1615/JEnhHeatTransf.v6.i2-4.80.
  • H. Honda, H. Takamatsu and J. J. Wei, “Enhanced boiling heat transfer from silicon chips with micro-pin fins immersed in FC-72,” J. Enhanc. Heat Transf., vol. 10, no. 2, pp. 211–224, 2003. DOI: 10.1615/JEnhHeatTransf.v10.i2.70.
  • U. Sajjad, A. Kumar and C.-C. Wang, “Nucleate pool boiling of sintered coated porous surfaces with dielectric liquid, HFE-7200,” J. Enhanc. Heat Transf., vol. 27, no. 8, pp. 767–784, 2020. DOI: 10.1615/JEnhHeatTransf.2020035315.
  • V. V. Nirgude and S. K. Sahu, “Nucleate boiling heat transfer performance of laser textured copper surfaces,” J. Enhanc. Heat Transf., vol. 26, no. 6, pp. 597–618, 2019. DOI: 10.1615/JEnhHeatTransf.2019030631.
  • M. Piasecka and K. Strąk, “Influence of the surface enhancement on the flow boiling heat transfer in a minichannel,” Heat Transf. Eng., vol. 40, no. 13-14, pp. 1162–1175, 2019. DOI: 10.1080/01457632.2018.1457264.
  • R. Hoke, et al., “High flux boiling heat transfer enhancement using triangle shaped vertical walls in two-phase microchannel heat exchangers,” Heat Trans Res, vol. 52, no. 7, pp. 1–16, 2021. DOI: 10.1615/HeatTransRes.2021035809.
  • L. Cheng and T. Chen, “Study of flow boiling heat transfer in a tube with axial microgrooves,” Exp. Heat Transf., vol. 14, no. 1, pp. 59–73, 2001. DOI: 10.1080/089161501461648.
  • D. Deng, L. Zeng and W. Sun, “A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks,” Int. J. Heat Mass Transf., vol. 175, pp. 121332, Aug. 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121332.
  • Y. Li, G. Xia, Y. Jia, Y. Cheng and J. Wang, “Experimental Investigation of flow boiling performance in microchannels with and without triangular cavities – a comparative study,” Int. J. Heat Mass Transf., vol. 108, no. Part B, pp. 1511–1526, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.011.
  • Y. F. Li, G. D. Xia, D. D. Ma, J. L. Yang and W. Li, “Experimental investigation of flow boiling characteristics in microchannel with triangular cavities and rectangular fins,” Int. J. Heat Mass Transf., vol. 148, pp. 119036, Feb. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119036.
  • J. Xu, X. Yu and W. Jin, “Porous-wall microchannels generate high frequency ‘eye-blinking’ interface oscillation, yielding ultra-stable wall temperatures,” Int. J. Heat Mass Transf., vol. 101, pp. 341–353, Oct. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.039.
  • Y. T. Jia, G. D. Xia, L. X. Zong, D. D. Ma and Y. X. Tang, “A comparative study of experimental flow boiling heat transfer and pressure drop characteristics in porous-wall microchannel heat sink,” Int. J. Heat Mass Transf., vol. 127, no. Part A, pp. 818–833, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.090.
  • G. Xia, Y. Cheng, L. Cheng and Y. Li, “Heat transfer characteristics and flow visualization during flow boiling of acetone in semi-open multi-microchannels,” Heat Transf. Eng., vol. 40, no. 16, pp. 1349–1362, 2019. DOI: 10.1080/01457632.2018.1470296.
  • L. X. Zong, et al., “Flow boiling instability characteristics in microchannels with porous-wall,” Int. J. Heat Mass Transf., vol. 146, pp. 118863, Jan. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118863.
  • X. Cheng and H. Wu, “Enhanced flow boiling performance in high-aspect-ratio groove-wall microchannels,” Int. J. Heat Mass Transf., vol. 164, pp. 120468, Jan. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120468.
  • C. Ren, W. Li, J. Ma, G. Huang and C. Li, “Flow boiling in microchannels enhanced by parallel microgrooves fabricated on the bottom surfaces,” Int. J. Heat Mass Transf., vol. 166, pp. 120756, Feb. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120756.
  • Q. Zhao, et al., “Visualization study of flow boiling characteristics in open microchannels with different wettability,” Int. J. Heat Mass Transf., vol. 180, pp. 121808, Dec. 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121808.
  • W. Li, J. Ma, T. Alam, F. Yang, J. Khan and C. Li, “Flow boiling of HFE-7100 in silicon microchannels integrated with multiple micro-nozzles and reentry micro-cavities,” Int. J. Heat Mass Transf., vol. 123, pp. 354–366, Aug. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.108.
  • W. Li, C. Li, Z. Wang and Y. Chen, “Enhanced flow boiling in microchannels integrated with supercapillary pinfin fences,” Int. J. Heat Mass Transf., vol. 183, no. Part B, pp. 122185, Feb. 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122185.
  • D. Deng, L. Chen, W. Wan, T. Fu and X. Huang, “Flow boiling performance in pin fin- interconnected reentrant microchannels heat sink in different operational conditions,” Appl. Therm. Eng., vol. 150, pp. 1260–1272, Mar. 2019. DOI: 10.1016/j.applthermaleng.2019.01.092.
  • D. Deng, Y. Xie, Q. Huang, Y. Tang, L. Huang and X. Huang, “Flow boiling performance of Ω-shaped reentrant copper microchannels with different channel sizes,” Exp. Therm. Fluid Sci., vol. 69, pp. 8–18, Dec. 2015. DOI: 10.1016/j.expthermflusci.2015.07.016.
  • Y. K. Prajapati, M. Pathak and M. K. Khan, “Bubble dynamics and flow boiling characteristics in three different microchannel configurations,” Int. J. Therm. Sci., vol. 112, pp. 371–382, Feb. 2017. DOI: 10.1016/j.ijthermalsci.2016.10.021.
  • A. Koşar, C. Kuo and Y. Peles, “Boiling heat transfer in rectangular microchannels with reentrant cavities,” Int. J. Heat Mass Transf., vol. 48, no. 23–24, pp. 4867–4886, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.06.003.
  • C. J. Kuo and Y. Peles, “Local measurement of flow boiling in structured surface microchannels,” Int. J. Heat Mass Transf., vol. 50, no. 23–24, pp. 4513–4526, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.03.047.
  • A. Sitar and I. Golobic, “Heat transfer enhancement of self-rewetting aqueous n-butanol solutions boiling in microchannels,” Int. J. Heat Mass Transf., vol. 81, pp. 198–206, Feb. 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.034.
  • W. Li, “Enhanced flow boiling in microchannels through integrating multiple micro-nozzles and reentry microcavities,” Appl. Phys. Lett., vol. 110, article no. 14104, pp. 5, Jan. 2017. DOI: 10.1063/1.4973495.
  • L. Cheng and T. Cheng, “Comparison of six typical correlations for upward flow boiling heat transfer with kerosene in a vertical smooth tube,” Heat Transf. Eng., vol. 21, no. 5, pp. 27–34, 2000. DOI: 10.1080/01457630050127928.
  • L. Cheng and H. Zou, “Evaluation of flow boiling heat transfer correlations with experimental data of R134a, R22, R410A and R245fa in microscale channels,” Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom., vol. 1, no. 4, pp. 363–380, 2010.
  • S.-M. Kim and I. Mudawar, “Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows,” Int. J. Heat Mass Transf., vol. 77, pp. 627–652, Oct. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.05.036.
  • J. C. Chen, “Correlation for boiling heat transfer to saturated fluids in convective flow,” Ind. Eng. Chem. Proc. Des. Dev., vol. 5, no. 3, pp. 322–329, 1966. DOI: 10.1021/i260019a023.
  • J. R. Thome, V. Dupont and A. M. Jacobi, “Heat transfer model for evaporation in microchannels. Part I: presentation of the model,” Int. J. Heat Mass Transf., vol. 47, no. 14–16, pp. 3375–3385, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.01.006.
  • V. Dupont, J. R. Thome and A. M. Jacobi, “Heat transfer model for evaporation in microchannels. Part II:comparison with the database,” Int. J. Heat Mass Transf., vol. 47, no. 14–16, pp. 3387–3401, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.01.007.
  • A. Cioncolini and J. R. Thome, “Algebraic turbulence modeling in adiabatic and evaporating annular two- phase flow,” Int. J. Heat Fluid Flow, vol. 32, no. 4, pp. 805–817, 2011. DOI: 10.1016/j.ijheatfluidflow.2011.05.006.
  • J. R. Thome and A. Cioncolini, “Unified model suite for two phase flow, convective boiling and condensation in macro- and microchannel,” Heat Transf. Eng, vol. 37, no. 13–14, pp. 1148–1157, 2016. DOI: 10.1080/01457632.2015.1112212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.