149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Novel Similarity Solution Approach Based Thermal Performance Prediction and Environmental Analysis of Evacuated U-Tube Solar Collector Employing Different Mono/Hybrid Nanofluids

ORCID Icon, , ORCID Icon &

References

  • B. K. Naik, M. Bhowmik and P. Muthukumar, “Experimental investigation and numerical modelling on the performance assessments of evacuated U – Tube solar collector systems,” Renew. Energ., vol. 134, pp. 1344–1361, Apr. 2019. DOI: 10.1016/j.renene.2018.09.066.
  • H. Kim, J. Ham, C. Park and H. Cho, “Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids,” Energy, vol. 94, pp. 497–507, Jan. 2016. DOI: 10.1016/j.energy.2015.11.021.
  • H. Ş. Aybar, M. Sharifpur, M. R. Azizian, M. Mehrabi and J. P. Meyer, “A review of thermal conductivity models for nanofluids,” Heat Transf. Eng., vol. 36, no. 13, pp. 1085–1110, Feb. 2015. DOI: 10.1080/01457632.2015.987586.
  • B. K. Naik and P. Muthukumar, “Performance assessment of evacuated U-tube solar collector: A numerical study,” Sadhana - Acad. Proc. Eng. Sci., vol. 44, no. 23, pp. 1–13, Jan. 2019. DOI: 10.1007/s12046-018-0974.
  • Y. Gao, et al., “Thermal performance and parameter analysis of a U-pipe evacuated solar tube collector,” Sol. Energy, vol. 107, pp. 714–727, Sep. 2014. DOI: 10.1016/j.solener.2014.05.023.
  • A. A. Badran, M. F. Mustafa, W. K. Dawood and Z. K. Ghazzawi, “On the measurement of bond conductance in solar collector absorber plate,” Energy Convers. Manag., vol. 49, no. 11, pp. 3305–3310, Nov. 2008. DOI: 10.1016/j.enconman.2008.01.041.
  • L. Haoran, H. Yurong, H. Yanwei, J. Baocheng and Y. Huang, “Thermophysical and natural convection characteristics of ethylene glycol and water mixture based ZnO nanofluids,” Int. J. Heat Mass Transf., vol. 91, pp. 385–389, Dec. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.07.126.
  • F. Mansoor, A. Ameneh and S. G. Etemad, “Stability and thermal conductivity of water-based carbon nanotube nanofluids,” Particuology, vol. 22, pp. 59–65, Oct. 2015. DOI: 10.1016/j.partic.2014.07.005.
  • H. T. Zhu, C. Y. Zhang, S. Q. Liu, Y. M. Tang and S. Y. Yin, “Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids,” Appl. Phys. Lett., vol. 89, no. 2, pp. 023123, Jul. 2006. DOI: 10.1063/1.2221905.
  • M. Sheikholeslami and D. D. Ganji, “Heat transfer of Cu–water nanofluid flow between parallel plates,” Powder Technol., vol. 235, pp. 873–879, Feb. 2013. DOI: 10.1016/j.powtec.2012.11.030.
  • M. Sheikholeslami, S. Soleimani and D. D. Ganji, “Effect of electric field on hydrothermal behavior of nanofluid in a complex geometry,” J. Mol. Liq., vol. 213, pp. 153–161, Jan. 2016. DOI: 10.1016/j.molliq.2015.11.015.
  • M. Sheikholeslami, M. M. Rashidi and D. D. Ganji, “Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid,” Comput. Methods Appl. Mech. Eng., vol. 294, pp. 299–312, Sep. 2015. DOI: 10.1016/j.cma.2015.06.010.
  • G. P. Celata, et al., “Heat transfer in water-based SiC and TiO2 nanofluids,” Heat Transf. Eng., vol. 34, no. 13, pp. 1060–1072, Apr. 2013. DOI: 10.1080/01457632.2013.763542.
  • Y. Li, H. Q. Xie, W. Yu and J. Li, “Investigation on heat transfer performances of nanofluids in solar collector,” MSF, vol. 694, pp. 33–36, Jul. 2011. DOI: 10.4028/www.scientific.net/MSF.694.33.
  • T. Yousefi, F. Veysi, E. Shojaeizadeh and S. Zinadini, “An experimental investigation on the effect of MWCNT–H2O nanofluid on the efficiency of flat-plate solar collectors,” Exp. Therm. Fluid Sci., vol. 39, pp. 207–212, May. 2012. DOI: 10.1016/j.expthermflusci.2012.01.025.
  • Z-h Liu, X-f Yang, G-s Wang and G-l Guo, “Influence of carbon nanotube suspension on the thermal performance of a miniature thermosyphon,” Int. J. Heat Mass Transf., vol. 53, no. 9–10, pp. 1914–1920, Apr. 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.12.065.
  • F. Cao, L. Zhao, F. Zhang and L. Guo, “Redesign of a water heating system using evacuated tube solar collectors: TRNSYS simulation and techno-economic evaluation,” Heat Transf. Eng., vol. 35, no. 6–8, pp. 556–566, Nov. 2014. DOI: 10.1080/01457632.2013.837369.
  • B. K. Naik, A. Varshney, P. Muthukumar and C. Somayaji, “Modelling and performance analysis of U type evacuated tube solar collector using different working fluids,” Energy Procedia, vol. 90, pp. 227–237, Dec. 2016. DOI: 10.1016/j.egypro.2016.11.189.
  • J. Akhter, S. I. Gilani, H. A. Kayiem and M. Ali, “Performance evaluation of a modified compound parabolic concentrating collector with varying concentration ratio,” Heat Transf. Eng., vol. 42, no. 13–14, pp. 1117–1131, Jun. 2021. DOI: 10.1080/01457632.2020.1777004.
  • S. K. Verma, A. K. Tiwari and D. S. Chauhan, “Experimental evaluation of flat plate solar collector using nanofluids,” Energy Convers. Manag., vol. 134, pp. 103–115, Feb. 2017. DOI: 10.1016/j.enconman.2016.12.037.
  • E. C. Okonkwo, I. W. Osho, D. Kavaz, M. Abid and T. A. Ansari, “Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid nanofluids,” Sustain. Energy Technol. Assess, vol. 37, pp. 100636, Feb. 2020. DOI: 10.1016/j.seta.2020.100636.
  • Z. Said, M. H. Sajid, M. A. Alim, R. Saidur and N. A. Rahim, “Experimental investigation of the thermophysical properties of Al2O3-nanofluid and its effect on a flat plate solar collector,” Int. Commun. Heat Mass Transf., vol. 48, pp. 99–107, Nov. 2013. DOI: 10.1016/j.icheatmasstransfer.2013.09.005.
  • S. Hamze, et al., “Dynamic viscosity of purified multi-walled carbon nanotubes water and water-propylene glycol-based nanofluids,” Heat Transf. Eng., vol. 42, no. 19–20, pp. 1663–1674, Sep. 2021. DOI: 10.1080/01457632.2020.1818382.
  • H. Kaya, K. Arslan and N. Elturgal, “Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids,” Renew. Energy, vol. 122, pp. 329–338, Jul. 2018. DOI: 10.1016/j.renene.2018.01.115.
  • L. Ma, Z. Lu, J. Zhang and R. Liang, “Thermal performance analysis of the glass evacuated tube solar collector with U-tube,” Build. Environ., vol. 45, no. 9, pp. 1959–1967, Sep. 2010. DOI: 10.1016/j.buildenv.2010.01.015.
  • G. I. Barenblatt, Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics. Cambridge, UK: Cambridge Univ. Press, 1996.
  • S. S. Singh and J. Sarkar, “Energy, exergy and economic assessments of shell and tube condenser using hybrid nanofluid as coolant,” Int. Commun. Heat Mass Transf., vol. 98, pp. 41–48, Nov. 2018. DOI: 10.1016/j.icheatmasstransfer.2018.08.005.
  • “Coal Equivalent,” European Nuclear Society, Brussels, BE. [Online]. Available: https://www.euronuclear.org/glossary/coal-equivalent/. Accessed: Feb. 15, 2021.
  • S. J. Kline and F. C. McClintock, “Describing uncertainty in single sample experiments,” Mech. Eng., vol. 75, pp. 3–8, 1953.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.