263
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Al2O3-CO2 Nanofluid Transport Properties: A Molecular Dynamics Study and Machine Learning Predictive Modelling

, , &

References

  • M. H. Esfe, A. Alirezaie, and M. Rejvani, “An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management,” Appl. Therm. Eng., vol. 111, pp. 1202–1210, Jan. 2017. DOI: 10.1016/j.applthermaleng.2016.09.091.
  • N. Kumar, S. S. Sonawane, and S. H. Sonawane, “Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid,” Int. Commun. Heat Mass Transf., vol. 90, pp. 1–10, Jan. 2018. DOI: 10.1016/j.icheatmasstransfer.2017.10.001.
  • M. Chandrasekar and S. Suresh, “A review on the mechanisms of heat transport in nanofluids,” Heat Transf. Eng., vol. 30, no. 14, pp. 1136–1150, 2009. DOI: 10.1080/01457630902972744.
  • M. Ramezanizadeh, M. A. Nazari, M. H. Ahmadi, and L. Chen, “A review on the approaches applied for cooling fuel cells,” Int. J. Heat Mass Transf., vol. 139, pp. 517–525, Aug. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.05.032.
  • Y. Tong, H. Lee, W. Kang, and H. Cho, “Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid and CuO nanofluid,” Appl. Therm. Eng., vol. 159, p. 113959, Aug. 2019. DOI: 10.1016/j.applthermaleng.2019.113959.
  • S. R. Abdallah, H. Saidani-Scott, and O. E. Abdellatif, “Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid,” Sol. Energy, vol. 181, pp. 108–115, Mar. 2019. DOI: 10.1016/j.solener.2019.01.088.
  • E. Bellos, C. Tzivanidis, and D. Tsimpoukis, “Enhancing the performance of parabolic trough collectors using nanofluids and turbulators,” Renew. Sust. Energy Rev., vol. 91, pp. 358–375, Aug. 2018. DOI: 10.1016/j.rser.2018.03.091.
  • M. Daneshipour and R. Rafee, “Nanofluids as the circuit fluids of the geothermal borehole heat exchangers,” Int. Commun. Heat Mass Transf., vol. 81, pp. 34–41, Feb. 2017. DOI: 10.1016/j.icheatmasstransfer.2016.12.002.
  • M. Bahiraei, et al., “Recent research contributions concerning use of nanofluids in heat exchangers: A critical review,” Appl. Therm. Eng., vol. 133, pp. 137–159, Mar. 2018. DOI: 10.1016/j.applthermaleng.2018.01.041.
  • H. S. Aybar, M. Sharifpur, M. R. Azizian, M. Mehrabi, and J. P. Meyer, “A review of thermal conductivity models for nanofluids,” Heat Transf. Eng., vol. 36, no. 13, pp. 1085–1110, 2015. DOI: 10.1080/01457632.2015.987586.
  • Z. Wan, et al., “Thermal performance of a miniature loop heat pipe using water–copper nanofluid,” Appl. Therm. Eng., vol. 78, pp. 712–719, Mar. 2015. DOI: 10.1016/j.applthermaleng.2014.11.010.
  • M. Mohammadi, M. Mohammadi, A. R. Ghahremani, M. B. Shafii, and N. Mohammadi, “Experimental investigation of thermal resistance of a ferrofluidic closed-loop pulsating heat pipe,” Heat Transf. Eng., vol. 35, no. 1, pp. 25–33, 2014. DOI: 10.1080/01457632.2013.810086.
  • Z. Ahmed, A. Bhargav, and S. S. Mallajosyula, “Estimating Al2O3–CO2 nanofluid viscosity: A molecular dynamics approach,” Eur. Phys. J. Appl. Phys., vol. 84, no. 3, p. 30902, Dec. 2018. DOI: 10.1051/epjap/2018180200.
  • Z. Ahmed, A. Sarode, P. Basarkar, A. Bhargav, and D. Banerjee, “Brownian motion and nanolayer study on thermal conductivity of Al2O3-CO2 nanofluid: A molecular dynamics approach,” Int. J. Transp. Phenom., vol. 15, no. 2, pp. 125–135, 2021.
  • Z. Ahmed and A. Bhargav, “Effect of aggregation morphology on thermal conductivity and viscosity of Al2O3-CO2 nanofluid: a molecular dynamics approach,” Nano Sci. Technol. Int. J., vol. 12, no. 1, pp. 19–37, 2021. DOI: 10.1615/NanoSciTechnolIntJ.2020033951.
  • A. Sarode, Z. Ahmed, P. Basarkar, A. Bhargav, and D. Banerjee, “A molecular dynamics approach of the role of carbon nanotube diameter on thermal interfacial resistance through vibrational mismatch analysis,” Int. J. Therm. Sci., vol. 122, pp. 33–38, Dec. 2017. DOI: 10.1016/j.ijthermalsci.2017.08.011.
  • Z. Ahmed and A. Bhargav, “A molecular dynamics approach of the effect of thermal interfacial resistance and nanolayer on enhanced thermal conductivity of Al2O3-CO2 nanofluid,” J. Enh. Heat Transf., vol. 28, no. 2, pp. 41–56, 2021. DOI: 10.1615/JEnhHeatTransf.2021037086.
  • J. H. Lee, S. H. Lee, and S. Pil Jang, “Do temperature and nanoparticle size affect the thermal conductivity of alumina nanofluids,” Appl. Phys. Lett., vol. 104, no. 16, p. 161908, 2014. DOI: 10.1063/1.4872164.
  • S. A. Angayarkanni, V. Sunny, and J. Philip, “Effect of nanoparticle size, morphology and concentration on specific heat capacity and thermal conductivity of nanofluids,” J. Nanofluids, vol. 4, no. 3, pp. 302–309, 2015. DOI: 10.1166/jon.2015.1167.
  • K. L. Teng, et al., “Enhanced thermal conductivity of nanofluids diagnosis by molecular dynamics simulations,” J. Nanosci. Nanotechnol., vol. 8, no. 7, pp. 3710–3718, 2008. DOI: 10.1166/jnn.2008.18336.
  • S. P. Jang and S. U. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids,” Appl. Phys. Lett., vol. 84, no. 21, pp. 4316–4318, 2004. DOI: 10.1063/1.1756684.
  • S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” J. Heat Transf., vol. 125, no. 4, pp. 567–574, 2003. DOI: 10.1115/1.1571080.
  • C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. Choi, “Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement,” Appl. Phys. Lett., vol. 87, no. 15, p. 153107, 2005. DOI: 10.1063/1.2093936.
  • J. H. Lee, et al., “Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles,” Int. J. Heat Mass Transf., vol. 51, no. 11–12, pp. 2651–2656, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.10.026.
  • X. Wang, X. Xu, and S. U. Choi, “Thermal conductivity of nanoparticle-fluid mixture,” J. Thermophys. Heat Transf., vol. 13, no. 4, pp. 474–480, 1999. DOI: 10.2514/2.6486.
  • C. T. Nguyen, et al., “Viscosity data for Al2O3–water nanofluid—hysteresis: Is heat transfer enhancement using nanofluids reliable,” Int. J. Therm. Sci., vol. 47, no. 2, pp. 103–111, 2008. DOI: 10.1016/j.ijthermalsci.2007.01.033.
  • M. J. Pastoriza-Gallego, L. Lugo, J. L. Legido, and M. M. Piñeiro, “Thermal conductivity and Viscosity measurements of ethylene glycol-based Al2O3 nanofluids,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 221, 2011. DOI: 10.1186/1556-276X-6-221.
  • J. P. Meyer, S. A. Adio, M. Sharifpur, and P. N. Nwosu, “The viscosity of nanofluids: A review of the theoretical, empirical, and numerical models,” Heat Transf. Eng., vol. 37, no. 5, pp. 387–421, 2016. DOI: 10.1080/01457632.2015.1057447.
  • M. Amani, M. Ameri, and A. Kasaeian, “Hydrothermal characteristics of spinel manganese ferrite nanofluid in a metal foam tube: Modeling of experimental results using artificial neural network,” Heat Transf. Eng., vol. 40, no. 8, pp. 627–639, 2019. DOI: 10.1080/01457632.2018.1436644.
  • M. H. Esfe, H. Rostamian, D. Toghraie, and W. M. Yan, “Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle,” J. Therm. Anal. Calorim., vol. 126, no. 2, pp. 643–648, May 2016. DOI: 10.1007/s10973-016-5506-7.
  • S. Toghyani, M. H. Ahmadi, A. Kasaeian, and A. H. Mohammadi, “Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine,” Int. J. Ambient Energy, vol. 37, no. 5, pp. 456–468, 2016. DOI: 10.1080/01430750.2014.986289.
  • M. H. Ahmadi, et al., “Application GMDH artificial neural network for modeling of Al2O3/water and Al2O3/ethylene glycol thermal conductivity,” IJHT, vol. 36, no. 3, pp. 773–782, 2018. DOI: 10.18280/ijht.360301.
  • A. Ebrahimi-Moghadam, B. Mohseni-Gharyehsafa, and M. Farzaneh-Gord, “Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al2O3-EG/W nanofluid flow inside parabolic trough solar collector,” Renew. Energy, vol. 129, pp. 473–485, Dec. 2018. DOI: 10.1016/j.renene.2018.06.023.
  • S. Plimpton, P. Crozier, and A. Thompson, “LAMMPS-large-scale atomic/molecular massively parallel simulator,” San. Natl. Lab., vol. 18, pp. 43, Feb. 2007.
  • A. R. A. Dezfoli, Z. Adabavazeh, and S. Mehrabian, “A molecular dynamic simulation of the behavior of water molecules inside a carbon nanotube,” Nanomech. Sci. Technol. Int. J., vol. 1, no. 3, pp. 247–255, 2010. DOI: 10.1615/NanomechanicsSciTechnolIntJ.v1.i3.40.
  • T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systems,” J. Chem. Phys., vol. 98, no. 12, pp. 10089–10092, 1993. DOI: 10.1063/1.464397.
  • M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids Oxford Science. Oxford, UK: Oxford University Press, 2017.
  • P. Vashishta, R. K. Kalia, A. Nakano, and J. P. Rino, “Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina,” J. Appl. Phys., vol. 103, no. 8, p. 083504, Apr. 2008. DOI: 10.1063/1.2901171.
  • W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graph, vol. 14, no. 1, pp. 33–38, 1996. DOI: 10.1016/0263-7855(96)00018-5.
  • M. G. Muraleedharan, D. S. Sundaram, A. Henry, and V. Yang, “Thermal conductivity calculation of nano-suspensions using Green–Kubo relations with reduced artificial correlations,” J. Phys. Condens. Matter, vol. 29, no. 15, p. 155302, Mar. 2017. DOI: 10.1088/1361-648X/aa5f08.
  • S. N. William, “What is a support vector machine?,” Nat. Biotechnol., vol. 24, no. 12, pp. 1565–1567, 2006. DOI: 10.1038/nbt1206-1565.
  • E. Y. Boateng, J. Otoo, and D. A. Abaye, “Basic tenets of classification algorithms k-nearest-neighbor, support vector machine, random forest and neural network: a review,” JDAIP, vol. 08, no. 04, pp. 341–357, 2020. DOI: 10.4236/jdaip.2020.84020.
  • A. U. Osarogiagbon, F. Khan, R. Venkatesan, and P. Gillard, “Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations,” Process Saf. Environ. Prot., vol. 147, pp. 367–384, Mar. 2021. DOI: 10.1016/j.psep.2020.09.038.
  • Z. Chen, B. Wang, and A. N. Gorban, “Multivariate Gaussian and student-t process regression for multi-output prediction,” Neural Comput. Appl., vol. 32, no. 8, pp. 3005–3028, 2020. DOI: 10.1007/s00521-019-04687-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.