497
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

A Critical Review on Mechanical Heat Switches for Engineering and Space Applications

, , &

References

  • M. J. Adams, M. Verosky, M. Zebarjadi and J. P. Heremans, “High switching ratio variable-temperature solid-state thermal switch based on thermoelectric effects,” Int. J. Heat Mass Transf., vol. 134, pp. 114–118, May 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.154.
  • J. H. Colwell, “The performance of a mechanical heat switch at low temperatures,” Rev. Sci. Instrum., vol. 40, no. 9, pp. 1182–1186, Nov. 1969. DOI: 10.1063/1.1684194.
  • M. J. DiPirro and E. P. Shirron, “Heat switches for ADRs,” Cryogenics, vol. 62, pp. 172–176, Aug. 2014. DOI: 10.1016/j.cryogenics.2014.03.017.
  • Q. S. Shu, J. A. Demko and J. E. Fesmire, “Heat switch technology for cryogenic thermal management,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 278, pp. 012133, Dec. 2017. DOI: 10.1088/1757-899X/278/1/012133.
  • D. H. Lowndes and L. Finegold, “Convenient method for applying force to a mechanical heat switch, for use in low temperature specific heat measurements,” Cryogenics, vol. 9, no. 5, pp. 382–384, Oct. 1969. DOI: 10.1016/0011-2275(69)90018-6.
  • M. Dietrich, A. Euler and G. Thummes, “A compact thermal heat switch for cryogenic space applications operating near 100K,” Cryogenics, vol. 59, pp. 70–75, Feb. 2014. DOI: 10.1016/j.cryogenics.2013.11.004.
  • R. L. Dolecek and J. J. Madden, “A mechanical heat switch,” Rev. Sci. Instrum., vol. 24, no. 11, pp. 1063–1064, Nov. 1953. DOI: 10.1063/1.1770593.
  • J. Ancsin and J. Lamarche, “Double mechanical heat switch for calorimetry below 1°K,” Rev. Sci. Instrum., vol. 38, no. 3, pp. 368–370, Mar. 1967. DOI: 10.1063/1.1720706.
  • R. P. Bywaters and R. A. Griffin, “A gas-gap thermal switch for cryogenic applications,” Cryogenics, vol. 13, no. 6, pp. 344–349, Jun. 1973. DOI: 10.1016/0011-2275(73)90059-3.
  • E. Schuberth, “Superconducting heat switch of simple design,” Rev. Sci. Instrum., vol. 55, no. 9, pp. 1486–1488, Sep. 1984. DOI: 10.1063/1.1137964.
  • D. J. Frank and T. C. Nast, “Getter-activated cryogenic thermal switch,” in Advances in Cryogenic Engineering, vol. 31, R. W. Fast, Ed., Plenum Press, New York, 1986, pp. 933–940. DOI: 10.1007/978-1-4613-2213-9_104.
  • M. Wang, L. Yang, T. Yan, J. Cai and J. Liang, “Development of a cryogenic thermal switch,” presented at International Cryocooler Conference, Inc., Boulder, CO, 2007.
  • J. Hwalek and E. Carr, “A liquid crystal ‘heat switch’,” Heat Transf. Eng., vol. 8, no. 1, pp. 36–38, Jan. 1987. DOI: 10.1080/01457638708962785.
  • M. Li, L. Li and D. Xu, “A mechanical thermal switch for conduction-cooled cryogenic system,” J. Phys.: Conf. Ser., vol. 897, pp. 012016, Sep. 2017. DOI: 10.1088/1742-6596/897/1/012016.
  • L. Duband and A. Ravex, “A thermal switch for use at 0.3 k in space borne cryogenic systems”, SAE Tech. Pap. Ser., pp. 941278, Jun. 1994. DOI: 10.4271/941278.
  • M. Dietrich, A. Euler and G. Thummes, “A lightweight thermal heat switch for redundant cryocooling on satellites,” Cryogenics, vol. 83, pp. 31–34, Apr. 2017. DOI: 10.1016/j.cryogenics.2017.02.003.
  • L. D. Wing, “Automatic thermal control switches,” J. Spacecraft Rockets, vol. 20, no. 6, pp. 553–558, Dec. 1983. DOI: 10.2514/3.8586.
  • B. R. Paulsen, J. C. Batty and J. Agren, “Cryogenic thermal diodes,” AIP Conf. Proc., vol. 504, no. 1, pp. 785–790, 2000. DOI: 10.1063/1.1302576.
  • C. Y. Tai, Y. Wong, A. J. Rodenbush, C. H. Joshi and P. J. Shirron, “A high conductance detachable heat switch for ADRs,” AIP Conf. Proc., vol. 710, no. 1, pp. 443–450, Jul. 2004. DOI: 10.1063/1.1774714.
  • M. Kimball and P. Shirron, “Heat switches providing low-activation power and quick-switching time for use in cryogenic multi-stage refrigerators,” AIP Conf. Proc., vol. 1434, no. 1, pp. 853–858, Jun. 2012. DOI: 10.1063/1.4707000.
  • I. D. Hepburn, “Space engineering model cryogen-free ADR for future ESA space missions,” AIP Conf. Proc., vol. 710, no. 1, pp. 1737–1745, Jul. 2004. DOI: 10.1063/1.1774873.
  • E. Sunada, K. Lankford, M. Pauken, K. Novak and G. Birur, “Wax-actuated heat switch for Mars surface applications,” AIP Conf. Proc., vol. 608, no. 1, pp. 211–213, Mar. 2002. DOI: 10.1063/1.1449727.
  • V. Krishnan, J. Singh, T. Woodruff, W. Notardonato and R. Vaidyanathan, “A shape memory alloy based cryogenic thermal conduction switch,” AIP Conf. Proc., vol. 711, no. 1, pp. 26–33, Jul. 2004. DOI: 10.1063/1.1774548.
  • M. Ando, K. Shinozaki, A. Okamoto, H. Sugita and T. Nohara, “Development of mechanical heat switch for future space missions,” 44th International Conference on Environmental Systems, Jul. 13, 2014.
  • A. Jahromi and D. Sullivan, “A piezoelectric cryogenic heat switch,” Rev. Sci. Instrum., vol. 85, no. 6, pp. 065118, May 2014. DOI: 10.1063/1.4876483.
  • O. Benafan, W. U. Notardonato, B. Meneghelli and R. Vaidyanathan, “Design and development of a shape memory alloy activated heat pipe-based thermal switch,” Smart Mater. Struct., vol. 22, no. 10, pp. 105017, Sep. 2013. DOI: 10.1088/0964-1726/22/10/105017.
  • J. L. Lemanski, V. Krishnan, R. Manjeri, W. Notardonato and R. Vaidyanathan, “A low hysteresis NiTiFe shape memory alloy based thermal conduction switch,” AIP Conf. Proc., vol. 824, no. 1, pp. 3–10, Apr. 2006. DOI: 10.1063/1.2192327.
  • H. Van Loo, “Redesign and characterization of a CTE-based thermal switch and launch lock for space applications,” Bachelor thesis, Netherlands Institute for Space Research, University of Groningen, Netherlands, Aug. 2016.
  • W. Zeng, M. T. Manzari, J. D. Lee and Y. L. Shen, “Domain switching effect on fracture of piezoelectric solids,” Mech. Res. Commun., vol. 30, no. 3, pp. 267–275, Jun. 2003. DOI: 10.1016/S0093-6413(03)00003-X.
  • P. Misra and J. Nagaraju, “Thermal gap conductance at low contact pressures (<1MPa): Effect of gold plating and plating thickness,” Int. J. Heat Mass Transf., vol. 53, no. 23–24, pp. 5373–5379, Nov. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.052.
  • G. Kumar Marri and C. Balaji, “Experimental and numerical investigations on a phase change material based heat sink with symbiotically joined heat pipe,” Heat Transf. Eng. vol. 42, no. 1, pp. 23–40, 2021. DOI: 10.1080/01457632.2019.1685241.
  • V. B. Krishnan, “Design, fabrication, and testing of a shape memory alloy-based cryogenic thermal conduction switch,” Master of science thesis, University of Central Florida, Orlando, Florida, 2004.
  • J. Leng, X. Lan, Y. Liu and S. Du, “Shape-memory polymers and their composites: stimulus methods and applications,” Prog. Mater. Sci., vol. 56, no. 7, pp. 1077–1135, Sep. 2011. DOI: 10.1016/j.pmatsci.2011.03.001.
  • A. Swanger, et al., “Apparatus and method for low-temperature training of shape memory alloys,” IOP Conf. Ser.: Mater. Sci. En.g, vol. 102, pp. 012008, Dec. 2015. DOI: 10.1088/1757-899X/102/1/012008.
  • O. Benafan and R. Vaidyanathan, “A shape memory alloy controlled heat pipe based thermal switch,” ASME International Mechanical Engineering Congress and Exposition. vol. 43840, Nov. 2009. pp. 107–109. DOI: 10.1115/IMECE2009-11735.
  • B. Marland, D. Bugby, C. Stouffer, B. Tomlinson and T. Davis, “Development and testing of a high performance cryogenic thermal switch,” in Cryocoolers, vol. 11, R. G. Ross, Ed., Springer, US, 2002, pp. 729–738. DOI: 10.1007/0-306-47112-4_89.
  • B. Marland, D. Bugby and C. Stouffer, “Development and testing of an advanced cryogenic thermal switch and cryogenic thermal switch test bed,” Cryogenics, vol. 44, no. 6–8, pp. 413–420, Aug. 2004. DOI: 10.1016/j.cryogenics.2004.03.014.
  • B. Marland, D. Bugby and C. Stouffer, “Development and testing of advanced cryogenic thermal switch concepts,” AIP Conf. Proc., vol. 504, no. 1, pp. 837–846, 2000. DOI: 10.1063/1.1302583.
  • L. Guo, X. Zhang, Y. Huang, R. Hu and C. Liu, “Thermal characterization of a new differential thermal expansion heat switch for space optical remote sensor,” Appl. Therm. Eng., vol. 113, pp. 1242–1249, Feb. 2017. DOI: 10.1016/j.applthermaleng.2016.11.102.
  • D. Bugby, B. Marland, C. Stouffer and E. Kroliczek, “Advanced Components and techniques for cryogenic integration,” 41st Aerospace Sciences Meeting and Exhibit, Jan. 2003. DOI: 10.2514/6.2003-344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.