222
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Performance Enhancement Using Porous Slabs in a Jet Impingement Microchannel Heat Sink

, &

References

  • N.-T. Nguyen and S. T. Wereley, Fundamentals and Applications of Microfluidics, 2nd ed. Norwood, MA, USA: Artech, Jul. 2006.
  • F. Luis and G. Moncayo, Microfluidics Fundamentals, Devices, and Applications. Weinheim, BW, Germany: Wiley, Jan. 2018.
  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett., vol. 2, no. 5, pp. 126–129, May 1981. DOI: 10.1109/EDL.1981.25367.
  • S. M. Sohel Murshed and C. A. Nieto de Castro, “A critical review of traditional and emerging techniques and fluids for electronics cooling,” Renew. Sustain. Energy Rev., vol. 78, pp. 821–833, Oct. 2017. DOI: 10.1016/j.rser.2017.04.112.
  • D. Jing and L. He, “Numerical studies on the hydraulic and thermal performances of microchannels with different cross-sectional shapes,” Int. J. Heat Mass Transf., vol. 143, pp. 118604, Aug. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118604.
  • H. Y. Wu and P. Cheng, “An experimental study of convective heat transfer in silicon microchannels with different surface conditions,” Int. J. Heat Mass Transf., vol. 46, no. 14, pp. 2547–2556, July 2003. DOI: 10.1016/S0017-9310(03)00035-8.
  • D. Sreehari and A. K. Sharma, “On thermal performance of serpentine silicon microchannels,” Int. J. Therm. Sci, vol. 146, pp. 106067, Dec. 2019. DOI: 10.1016/j.ijthermalsci.2019.106067.
  • G. Xie, J. Liu, W. Zhang, G. Lorenzini and C. Biserni, “Numerical prediction of flow structure and heat transfer in square channels with dimples combined with secondary half-size dimples/protrusions,” Num. Heat Tranf., Part A: Appl., vol. 65, no. 4, pp. 327–356, Jul. 2014. DOI: 10.1080/10407782.2013.832073.
  • F. Hong and P. Cheng, “Three dimensional numerical analyses and optimization of offset strip-fin microchannel heat sinks,” Int. Commun. Heat Mass Transf., vol. 36, no. 7, pp. 651–656, Aug. 2009. DOI: 10.1016/j.icheatmasstransfer.2009.02.015.
  • Y. L. Zhai, G. D. Xia, X. F. Liu and Y. F. Li, “Heat transfer in the microchannels with fan-shaped reentrant cavities and different ribs based on field synergy principle and entropy generation analysis,” Int. J. Heat Mass Transf., vol. 68, pp. 224–233, Jan. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.08.086.
  • T. C. Hung, Y. X. Huang and W. M. Yan, “Thermal performance analysis of porous-microchannel heat sinks with different configuration designs,” Int. J. Heat Mass Transf., vol. 66, pp. 235–243, Nov. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.019.
  • S. Sivasankaran and K. Narrein, “Numerical investigation of two-phase laminar pulsating nanofluid flow in helical microchannel filled with a porous medium,” Int. Commun. Heat Mass Transf., vol. 75, pp. 86–91, Jul. 2016. DOI: 10.1016/j.icheatmasstransfer.2016.03.016.
  • G. Lu, J. Zhao, L. Lin, X. D. Wang and W. M. Yan, “A new scheme for reducing pressure drop and thermal resistance simultaneously in microchannel heat sinks with wavy porous fins,” Int. J. Heat Mass Transf., vol. 111, pp. 1071–1078, Aug. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.086.
  • A. Ghahremannezhad and K. Vafai, “Thermal and hydraulic performance enhancement of microchannel heat sinks utilizing porous substrates,” Int. J. Heat Mass Transf., vol. 122, pp. 1313–1326, Jul. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.024.
  • A. Abdollahi, R. N. Sharma, H. A. Mohammed and A. Vatani, “Heat transfer and flow analysis of Al2O3-water nanofluids in interrupted microchannel heat sink with ellipse and diamond ribs in the transverse microchambers,” Heat Transf. Eng., vol. 39, no. 16, pp. 1461–1469, Oct. 2018. DOI: 10.1080/01457632.2017.1379344.
  • O. O. Adewumi, T. Bello-Ochende and J. P. Meyer, “Numerical investigation into the thermal performance of single microchannels with varying axial length and different shapes of micro pin-fin inserts,” Heat Transf. Eng., vol. 38, no. 13, pp. 1157–1170, Mar. 2017. DOI: 10.1080/01457632.2016.1239927.
  • L. Chai, G. Xia and J. Qi, “Experimental and numerical study of flow and heat transfer in trapezoidal microchannels,” Heat Transf. Eng., vol. 33, no. 11, pp. 972–981, Mar. 2012. DOI: 10.1080/01457632.2012.654731.
  • T. Coskun and E. Cetkin, “Heat transfer enhancement in a microchannel heat sink: Nanofluids and/or micro pin fins,” Heat Transf. Eng., vol. 41, no. 21, pp. 1818–1828, Oct. 2019. DOI: 10.1080/01457632.2019.1670467.
  • N. Tran, Y. J. Chang, J. T. Teng, T. Dang and R. Greif, “Enhancement thermodynamic performance of microchannel heat sink by using a novel multi-nozzle structure,” Int. J. Heat Mass Transf., vol. 101, pp. 656–666, Oct. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.111.
  • M. K. Sung and I. Mudawar, “Effects of jet pattern on single-phase cooling performance of hybrid micro-channel/micro-circular-jet-impingement thermal management scheme,” Int. J. Heat Mass Transf., vol. 51, no. 19–20, pp. 4614–4627, Sep. 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.02.021.
  • Y. Hadad, et al., “Performance analysis and shape optimization of a water-cooled impingement micro-channel heat sink including manifolds,” Int. J. Therm. Sci., vol. 148, pp. 106145, 2020. DOI: 10.1016/j.ijthermalsci.2019.106145.
  • A. Husain and M. Ariz, “Thermal performance of jet impingement with spent flow management,” Int. J. Eng. Trans. A Basics, vol. 30, no. 10, pp. 1599–1608, Jul. 2017. DOI: 10.5829/ije.2017.30.10a.22.
  • P. Naphon, L. Nakharintr and S. Wiriyasart, “Continuous nanofluids jet impingement heat transfer and flow in a micro-channel heat sink,” Int. J. Heat Mass Transf., vol. 126, no. Part A, pp. 924–932, Nov. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.101.
  • X. Huang, W. Yang, T. Ming, W. Shen and X. Yu, “Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples,” Int. J. Heat Mass Transf., vol. 112, pp. 113–124, Sep. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.078.
  • A. Husain, M. Ariz, N. Z. H. Al-Rawahi and M. Z. Ansari, “Thermal performance analysis of a hybrid micro-channel, -pillar and -jet impingement heat sink,” Appl. Therm. Eng., vol. 102, pp. 989–1000, Jun. 2016. DOI: 10.1016/j.applthermaleng.2016.03.048.
  • C. S. Sharma, et al., “Energy efficient hotspot-targeted embedded liquid cooling of electronics,” Appl. Energy., vol. 138, pp. 414–422, Jan. 2015. DOI: 10.1016/j.apenergy.2014.10.068.
  • ANSYS Fluent, version 18.0, Canonsburg, PA, USA, Jan. 2017.
  • N. Zuckerman and N. Lior, “Jet impingement heat transfer: Physics, correlations, and numerical modeling,” Adv. Heat Transf., vol. 39, pp. 565–631, Dec. 2005. DOI: 10.1016/S0065-2717(06)39006-5.
  • G. M. Carlomagno and A. Ianiro, “Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: A review,” Exp. Therm. Fluid Sci., vol. 58, pp. 15–35, Oct. 2014. DOI: 10.1016/j.expthermflusci.2014.06.010.
  • X.-Y. Li, S.-L. Wang, X.-D. Wang and T.-H. Wang, “Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks,” Int. J. Therm. Sci., vol. 137, pp. 616–626, Mar2019. DOI: 10.1016/j.ijthermalsci.2018.12.029.
  • S. Bazkhane and I. Zahmatkesh, “Taguchi–based sensitivity analysis of hydrodynamics and heat transfer of nanofluids in a microchannel heat sink (MCHS) having porous substrates,” Int. Commun. Heat Mass Transf., vol. 118, pp. 104885, Nov. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104885.
  • J. K. Carson, S. J. Lovatt, D. J. Tanner and A. C. Cleland, “Thermal conductivity bounds for isotropic, porous materials,” Int. J. Heat Mass Transf., vol. 48, no. 11, pp. 2150–2158, May 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.12.032.
  • G. Hetsroni, M. Gurevich and R. Rozenblit, “Sintered porous medium heat sink for cooling of high-power mini-devices,” Int. J. Heat Fluid Flow., vol. 27, no. 2, pp. 259–266, Apr. 2006. DOI: 10.1016/j.ijheatfluidflow.2005.08.005.
  • E. N. Wang, et al., “Micromachined jets for liquid impingement cooling of VLSI chips,” J. Microelectromech. Syst., vol. 13, no. 5, pp. 833–842, Oct. 2004. DOI: 10.1109/JMEMS.2004.835768.
  • H. Aref, et al., “Frontiers of chaotic advection,” Rev. Mod. Phys., vol. 89, no. 2, pp. 1–66, Jun. 2017. DOI: 10.1103/RevModPhys.89.025007.
  • D. R. Lester, G. Metcalfe and M. G. Trefry, “Is chaotic advection inherent to porous media flow,” Phys Rev Lett., vol. 111, no. 17, pp. 174101, Oct. 2013. DOI: 10.1103/PhysRevLett.111.174101.
  • J. Bear, Dynamics of Fluids in Porous Media, 1st ed. New York, NY, USA: Dover Publication, 1988.
  • C. T. Hsu and P. Cheng, “Thermal dispersion in a porous medium,” Int. J. Heat Mass Transf., vol. 33, no. 8, pp. 1587–1597, Aug. 1990. DOI: 10.1016/0017-9310(90)90015-M.
  • S. Mohith, P. N. Karanth and S. M. Kulkarni, “Recent trends in mechanical micropumps and their applications: A review,” Mechatronics, vol. 60, pp. 34–55, Jun. 2019. DOI: 10.1016/j.mechatronics.2019.04.009.
  • D. J. Womac, S. Ramadhyani and F. P. Incropera, “Correlating equations for impingement cooling of small heat sources with single circular liquid jets,” J. Heat Transf., vol. 115, no. 1, pp. 106–115, Feb. 1993. DOI: 10.1115/1.2910635.
  • C. Y. Li and S. V. Garimella, “Prandtl-number effects and generalized correlations for confined and submerged jet impingement,” Int. J. Heat Mass Transf., vol. 44, no. 18, pp. 3471–3480, Sep. 2001. DOI: 10.1016/S0017-9310(01)00003-5.
  • G. J. Michna, E. A. Browne, Y. Peles and M. K. Jensen, “The effect of area ratio on microjet array heat transfer,” Int. J. Heat Mass Transf., vol. 54, no. 9–10, pp. 1782–1790, Apr. 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.12.038.
  • T. Muszynski and R. Andrzejczyk, “Applicability of arrays of microjet heat transfer correlations to design compact heat exchangers,” Appl. Therm. Eng., vol. 100, pp. 105–113, May 2016. DOI: 10.1016/j.applthermaleng.2016.01.120.
  • E. Achenbach, “Heat and flow characteristics of packed beds,” Exp. Therm. Fluid Sci., vol. 10, no. 1, pp. 17–27, Jan. 1995. DOI: 10.1016/0894-1777(94)00077-L.
  • B. F. Ryan, T. A. Ryan, Jr. and B. L. Joiner, “Minitab,” version 18, PA, U.S., Jun. 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.