227
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Experimental and Three-Dimensional Numerical Study of the Single/Multiple Sessile Droplets Evaporation

, , , &

References

  • P.-G. de Gennes, F. Brochard-Wyart, D. Quéré, A. Reisinger and B. Widom, “Capillarity and wetting phenomena: Drops, bubbles, pearls, waves,” Phys. Today, vol. 57, no. 12, pp. 66–67, Dec. 2004. DOI: 10.1063/1.1878340.
  • H. Liu, Science and Engineering of Droplets: Fundamentals and Applications, Norwich, CT, USA: Noyes Publications, 2000.
  • W. A. Sirignano, Fluid Dynamics and Transport of Droplets and Sprays, 2nd ed. Cambridge, England: Cambridge University Press, 2014.
  • R. G. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” J. Colloid Interface Sci., vol. 61, no. 2, pp. 336–350, Sep. 1977. DOI: 10.1016/0021–9797(77)90396-4.
  • O. E. Ruiz and W. Z. Black, “Evaporation of water droplets placed on a heated horizontal surface,” J. Heat Transfer, vol. 124, no. 5, pp. 854–863, Oct. 2002. DOI: 10.1115/1.1494092.
  • R. Mollaret, K. Sefiane, J. Christy and D. Veyret, “Experimental and numerical investigation of the evaporation into air of a drop on a heated surface,” Chem. Engin. Res. Design, vol. 82, no. 4, pp. 471–480, Apr. 2004. DOI: 10.1205/026387604323050182.
  • Y.-S. Yu, Z. Wang and Y.-P. Zhao, “Experimental and theoretical investigations of evaporation of sessile water droplet on hydrophobic surfaces,” J. Colloid Interface Sci., vol. 365, no. 1, pp. 254–259, Jan. 2012. DOI: 10.1016/j.jcis.2011.09.007.
  • T. A. Nguyen, et al., “Theoretical and experimental analysis of droplet evaporation on solid surfaces,” Chem. Engin. Sci., vol. 69, no. 1, pp. 522–529, Feb. 2012. DOI: 10.1016/j.ces.2011.11.009.
  • S. Semenov, V. M. Starov, R. G. Rubio, H. Agogo and M. G. Velarde, “Evaporation of sessile water droplets: Universal behaviour in presence of contact angle hysteresis,” Colloids Surfaces A: Physicochem. Engin. Aspects, vol. 391, no. 1–3, pp. 135–144, Nov. 2011. DOI: 10.1016/j.colsurfa.2011.07.013.
  • S. David, K. Sefiane and L. Tadrist, “Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops,” Colloids Surfaces A: Physicochem. Engin. Aspects, vol. 298, no. 1–2, pp. 108–114, Apr. 2007. DOI: 10.1016/j.colsurfa.2006.12.018.
  • M. C. Lopes, E. Bonaccurso, T. Gambaryan-Roisman and P. Stephan, “Influence of the substrate thermal properties on sessile droplet evaporation: Effect of transient heat transport,” Colloids Surfaces A: Physicochem. Engin. Aspects, vol. 432, pp. 64–70, Sep. 2013. DOI: 10.1016/j.colsurfa.2013.04.017.
  • D. Khilifi, W. Foudhil, S. Harmand and S. B. Jabrallah, “Evaporation of a sessile oil drop in the Wenzel-like regime,” Int. J. Thermal Sci., vol. 151, pp. 106236, May 2020. DOI: 10.1016/j.ijthermalsci.2019.106236.
  • G. Lu, Y.-Y. Duan, X-. D. Wang and D.-J. Lee, “Internal flow in evaporating droplet on heated solid surface,” Int. J. Heat Mass Transfer, vol. 54, no. 19–20, pp. 4437–4447, Sep. 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.04.039.
  • K. Yang, F. Hong and P. Cheng, “A fully coupled numerical simulation of sessile droplet evaporation using Arbitrary Lagrangian–Eulerian formulation,” Int. J. Heat Mass Transfer, vol. 70, pp. 409–420, Mar. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.11.017.
  • W. Foudhil, C. Aricò, P. Perre and S. Jabrallah, “Use of heating configuration to control Marangoni circulation during droplet evaporation,” Water, vol. 14, no. 10, pp. 1653, May 2022. DOI: 10.3390/w14101653.
  • S. Semenov, V. Starov, R. Rubio and M. Velarde, “Instantaneous distribution of fluxes in the course of evaporation of sessile liquid droplets: Computer simulations,” Colloids Surfaces A: Physicochem. Engin. Aspects, vol. 372, no. 1–3, pp. 127–134, Dec. 2010. DOI: 10.1016/j.colsurfa.2010.10.004.
  • N. Murisic and L. Kondic, “On evaporation of sessile drops with moving contact lines,” J. Fluid Mech., vol. 679, pp. 219–246, Apr. 2011. DOI: 10.1017/jfm.2011.133.
  • H. Hu and R. G. Larson, “Evaporation of a sessile droplet on a substrate,” J. Phys. Chem. B., vol. 106, no. 6, pp. 1334–1344, Jan. 2002. DOI: 10.1021/jp0118322.
  • F. Girard, M. Antoni and K. Sefiane, “On the effect of Marangoni flow on evaporation rates of heated water drops,” Langmuir, vol. 24, no. 17, pp. 9207–9210, Aug. 2008. DOI: 10.1021/la801294x.
  • E. Widjaja and M. T. Harris, “Numerical study of vapor phase-diffusion driven sessile drop evaporation,” Comput. Chem. Engin., vol. 32, no. 10, pp. 2169–2178, Oct. 2008. DOI: 10.1016/j.compchemeng.2007.10.014.
  • A. Maatar, S. Chikh, M. A. Saada and L. Tadrist, “Transient effects on sessile droplet evaporation of volatile liquids,” Int. J. Heat Mass Transfer, vol. 86, pp. 212–220, Jul. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.077.
  • C. Diddens, “Detailed finite element method modeling of evaporating multi-component droplets,” J. Computational Phys., vol. 340, pp. 670–687, Jul. 2017. DOI: 10.1016/j.jcp.2017.03.049.
  • C. Diddens, J. G. Kuerten, C. Van der Geld and H. Wijshoff, “Modeling the evaporation of sessile multi-component droplets,” J Colloid Interface Sci., vol. 487, pp. 426–436, Feb. 2017. DOI: 10.1016/j.jcis.2016.10.030.
  • C. Diddens, et al., “Evaporating pure, binary and ternary droplets: Thermal effects and axial symmetry breaking,” J. Fluid Mech., vol. 823, pp. 470–497, Jun. 2017. DOI: 10.1017/jfm.2017.312.
  • S. Zhou, L. Zhou, X. Du and Y. Yang, “Heat transfer characteristics in an evaporating thin film and intrinsic meniscus in a binary fluid sessile droplet,” Heat Transfer Engin., vol. 40, no. 5–6, pp. 450–463, 2019. DOI: 10.1080/01457632.2018.1432043.
  • M. Sengul, E. H. Isik and I. B. Ozdemir, “Models for droplet motion on hydrophilic and hydrophobic surfaces,” Heat Transfer Engin., vol. 43, no. 14, pp. 1256–1268, 2022. DOI: 10.1080/01457632.2021.1953753.
  • W. Foudhil, P. Chen, K. Fahem, S. Harmand and S. B. Jabrallah, “Study of the evaporation kinetics of pure and binary droplets: Volatility effect,” Heat Mass Transfer, vol. 57, no. 11, pp. 1773–1790, Apr. 2021. DOI: 10.1007/s00231-021-03043-8.
  • R. Boubaker, S. Ouenzerfi, S. Harmand and A. Koched, “Visualization of the effect of temperature on the velocity of an evaporating droplet using Micro-PIV,” 19th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanic. Lisbon (Portugal), 2018.
  • AJ. D. Shaikeea and S. Basu, “Insight into the evaporation dynamics of a pair of sessile droplets on a hydrophobic substrate,” Langmuir, vol. 32, no. 5, pp. 1309–1318, Feb. 2016. DOI: 10.1021/acs.langmuir.5b04570.
  • A. Shaikeea, S. Basu, S. Hatte and L. Bansal, “Insights into vapor-mediated interactions in a nanocolloidal droplet system: Evaporation dynamics and affects on self-assembly topologies on macro- to microscales,” Langmuir, vol. 32, no. 40, pp. 10334–10343, Oct. 2016. DOI: 10.1021/acs.langmuir.6b03024.
  • AJ. D. Shaikeea and S. Basu, “Evaporating sessile droplet pair: Insights into contact line motion, flow transitions and emergence of universal vaporisation pattern,” Appl. Phys. Lett, vol. 108, no. 24, pp. 244102, Jun. 2016. DOI: 10.1063/1.4953836.
  • T. K. Pradhan and P. K. Panigrahi, “Influence of an adjacent droplet on fluid convection inside an evaporating droplet of binary mixture,” Colloids Surfaces A: Physicochem. Engin. Aspects, vol. 500, pp. 154–165, Jul. 2016. DOI: 10.1016/j.colsurfa.2016.03.073.
  • A. M. Lacasta, I. M. Sokolov, J. M. Sancho and F. Sagués, “Competitive evaporation in arrays of droplets,” Phys. Rev. E, vol. 57, no. 5, pp. 6198–6201, May 1998. DOI: 10.1103/PhysRevE.57.6198.
  • C. Schäfle, C. Bechinger, B. Rinn, C. David and P. Leiderer, “Cooperative evaporation in ordered arrays of volatile droplets,” Phys. Rev. Lett., vol. 83, no. 25, pp. 5302–5305, Dec. 1999. DOI: 10.1103/PhysRevLett.83.5302.
  • T. Kokalj, H. Cho, M. Jenko and L. P. Lee, “Biologically inspired porous cooling membrane using arrayed-droplets evaporation,” Appl. Phys. Lett, vol. 96, no. 16, pp. 163703, Apr. 2010. DOI: 10.1063/1.3332398.
  • M. Sokuler, G. K. Auernhammer, C. J. Liu, E. Bonaccurso and H.-J. Butt, “Dynamics of condensation and evaporation: Effect of inter-drop spacing,” Europhys. Lett., vol. 89, no. 3, pp. 36004, Feb. 2010. DOI: 10.1209/0295–5075/89/36004.
  • G. Castanet, L. Perrin, O. Caballina and F. Lemoine, “Evaporation of closely-spaced interacting droplets arranged in a single row,” Int. J. Heat Mass Transfer, vol. 93, pp. 788–802, Feb. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.064.
  • O. Carrier, et al., “Evaporation of water: Evaporation rate and collective effects,” J. Fluid Mech., vol. 798, pp. 774–786, Jul. 2016. DOI: 10.1017/jfm.2016.356.
  • K. L. Chong, Y. Li, C. S. Ng, R. Verzicco and D. Lohse, “Convection-dominated dissolution for single and multiple immersed sessile droplets,” J. Fluid Mech., vol. 892, pp. 1–19, Jun. 2020. DOI: 10.1017/jfm.2020.175.
  • G. Laghezza, et al., “Collective and convective effects compete in patterns of dissolving surface droplets,” Soft Matter, vol. 12, no. 26, pp. 5787–5796, May 2016. DOI: 10.1039/C6SM00767H.
  • D. Khilifi, W. Foudhil, K. Fahem, S. Harmand and J. S. Ben, “Study of the phenomenon of the interaction between sessile drops during evaporation,” Therm Sci., vol. 23, no. 2 Part B, pp. 1105–1114, 2019. DOI: 10.2298/TSCI180406188K.
  • A. W. Wray, B. R. Duffy, and S. K. Wilson, “Competitive evaporation of multiple sessile droplets,” J. Fluid Mech., Vol. 884, pp. A45-1–A45-19, 2020. DOI: 10.1017/jfm.2019.919.
  • F. G. Schofield, A. W. Wray, D. Pritchard and S. K. Wilson, “The shielding effect extends the lifetimes of two-dimensional sessile droplets,” J Eng Math, vol. 120, no. 1, pp. 89–110, Feb. 2020. DOI: 10.1007/s10665-019-10033-7.
  • J. Wang, X. Huang, X. Qiao, D. Ju and C. Sun, “Experimental study on evaporation characteristics of single and multiple fuel droplets,” J. Energy Institute, vol. 93, no. 4, pp. 1473–1480, Aug. 2020. DOI: 10.1016/j.joei.2020.01.009.
  • A. Aboubakri, Y. Akkus, A. K. Sadaghiani, K. Sefiane and A. Koşar, “Computational and experimental investigations on the evaporation of single and multiple elongated droplets,” Chem. Engin. J. Adv., vol. 10, pp. 100255, May 2022. DOI: 10.1016/j.ceja.2022.100255.
  • A. W. Wray, P. S. Wray, B. R. Duffy and S. K. Wilson, “Contact-line deposits from multiple evaporating droplets,” Phys. Rev. Fluids, vol. 6, no. 7, pp. 073604, Jul. 2021. DOI: 10.1103/PhysRevFluids.6.073604.
  • R. Ledesma-Aguilar, D. Vella and J. M. Yeomans, “Lattice-Boltzmann simulations of droplet evaporation,” Soft Matter, vol. 10, no. 41, pp. 8267–8275, Oct. 2014. DOI: 10.1039/C4SM01291G.
  • P. J. Sáenz, K. Sefiane, J. Kim, O. K. Matar and P. Valluri, “Evaporation of sessile drops: A three-dimensional approach,” J. Fluid Mech., vol. 772, pp. 705–739, May 2015. DOI: 10.1017/jfm.2015.224.
  • Q. Zhang, C. Zhu and M. Zhu, “Three-dimensional numerical simulation of droplet evaporation using the lattice Boltzmann method based on GPU-CUDA accelerated algorithm,” CiCP, vol. 23, no. 4, pp. 1150–1166, Apr. 2018. DOI: 10.4208/cicp.OA-2016-0185.
  • Comsol Multiphysics, Micro-fluidics Module, User’s Guide, Theory for the Two-Phase Flow, Moving Mesh User Interface. Stockholm, Sweden: COMSOL AB, 2012, pp. 113–121.
  • S. Semenov, V. M. Starov and R. G. Rubio, “Evaporation of pinned sessile microdroplets of water on a highly heat-conductive substrate: Computer simulations,” Eur. Phys. J. Spec. Top, vol. 219, no. 1, pp. 143–154, Mar. 2013. DOI: 10.1140/epjst/e2013-01789-y.
  • H. Song, Y. Lee, S. Jin, H.-Y. Kim and J. Yoo, “Prediction of sessile drop evaporation considering surface wettability,” Microelectr. Engin., vol. 88, no. 11, pp. 3249–3255, Nov. 2011. DOI: 10.1016/j.mee.2011.07.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.