231
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The Effect of Longitudinal Heat Conduction on Thermal Enhancement of Plastic Plate Heat Exchangers

, , &

References

  • Q. W. Wang, M. Zeng, T. Ma, X. P. Du, and J. F. Yang, “Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization,” Appl. Energy, vol. 135, pp. 748–777, Dec. 2014. DOI: 10.1016/j.apenergy.2014.05.004.
  • H. S. Kou and P. Yuan, “The effect of longitudinal wall conduction on the crossflow heat exchanger with nonuniform inlet temperatures,” Heat Transf. Eng., vol. 19, no. 2, pp. 54–63, 1998. DOI: 10.1080/01457639808939921.
  • W. Roetzel and Y. Xuan, “The effect of core longitudinal heat conduction on the transient behavior of multipass shell-and-tube heat exchangers,” Heat Transf. Eng., vol. 14, no. 1, pp. 52–61, 1993. DOI: 10.1080/01457639308939794.
  • W. Q. Tao. Heat Transfer, 5th ed. Beijing, China: Higher Education Press Pub, 2019.
  • C. Ranganayakulu and K. N. Seetharamu, “The combined effects of longitudinal heat conduction, flow nonuniformity and temperature nonuniformity in crossflow plate-fin heat exchangers,” Int. Commun. Heat Mass Transf., vol. 26, no. 5, pp. 669–678, Jul. 1999. DOI: 10.1016/S0735-1933(99)00053-6.
  • C. Ranganayakulu and P. Pallavi, “Development of heat transfer coefficient and friction factor correlations for offset fins using CFD,” Int. J. Numer. Methods Heat Fluid Flow, vol. 21, no. 8, pp. 935–951, Nov. 2011. DOI: 10.1108/09615531111177732.
  • C. Ranganayakulu, X. Luo, and S. Kabelac, “The single-blow transient testing technique for offset and wavy fins of compact plate-fin heat exchangers,” Appl. Therm. Eng., vol. 111, pp. 1588–1595, Jan. 2017. DOI: 10.1016/j.applthermaleng.2016.05.118.
  • C. Ranganayakulu, K. N. Seetharamu, and K. V. Sreevatsan, “The effects of longitudinal heat conduction in compact plate-fin and tube-fin heat exchangers using a finite element method,” Int. J. Heat Mass Transf., vol. 40, no. 6, pp. 1261–1277, Apr. 1997. DOI: 10.1016/S0017-9310(96)00182-2.
  • X. Zhang and Y. T. Ge, “The effect of heat conduction through fins on the performance of finned-tube CO2 supercritical gas coolers,” Int. J. Heat Mass Transf., vol. 181, pp. 121908, Dec. 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121908.
  • H. N. Shi, H. L. Chang, T. Ma, and Q. W. Wang, “Predictive investigation on thermal conduction resistance of printed circuit heat exchangers,” J. Therm. Sci., vol. 31, no. 6, pp. 2281–2292, 2022. DOI: 10.1007/s11630-022-1675-9.
  • L. H. Tang, B. H. Yang, J. Pan, and B. Sundén, “Thermal performance analysis in a zigzag channel printed circuit heat exchanger under different conditions,” Heat Transf. Eng., vol. 43, no. 7, pp. 567–583, 2022. DOI: 10.1080/01457632.2021.1896832.
  • G. Venkatarathnam and S. P. Narayanan, “Performance of a counter flow heat exchanger with longitudinal heat conduction through the wall separating the fluid streams from the environment,” Cryogenics, vol. 39, no. 10, pp. 811–819, Oct. 1999. DOI: 10.1016/S0011-2275(99)00122-8.
  • L. R. Raju and T. K. Nandi, “Effective NTU of a counterflow heat exchanger with unbalanced flow and longitudinal heat conduction through fluid separating and outer walls,” Appl. Therm. Eng., vol. 112, pp. 1172–1177, Feb. 2017. DOI: 10.1016/j.applthermaleng.2016.10.200.
  • S. S. Kumar, L. R. Raju, and T. K. Nandi, “Thermal performance of perforated plate matrix heat exchangers with effects from outer wall and flow channel geometry,” Cryogenics, vol. 72, no. 2, pp. 153–160, Dec. 2015. DOI: 10.1016/j.cryogenics.2015.10.007.
  • S. P. Narayanan and G. Venkatarathnam, “Performance degradation due to longitudinal heat conduction in very high NTU counterflow heat exchangers,” Cryogenics, vol. 38, no. 9, pp. 927–930, Sep. 1998. DOI: 10.1016/S0011-2275(98)00064-2.
  • M. E. Arici, “Heat transfer analysis for a concentric tube heat exchanger including the wall axial conduction,” Heat Transf. Eng., vol. 31, no. 13, pp. 1034–1041, 2010. DOI: 10.1080/01457631003639067.
  • M. Ciofalo, “Local effects of longitudinal heat conduction in plate heat exchangers,” Int. J. Heat Mass Transf., vol. 50, no. 15–16, pp. 3019–3025, Jul. 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.12.006.
  • J. H. Doo et al., “Theoretical prediction of longitudinal heat conduction effect in cross-corrugated heat exchanger,” Int. J. Heat Mass Transf., vol. 55, no. 15–16, pp. 4129–4138, Jul. 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.054.
  • T. Ma et al., “Numerical study on small-scale longitudinal heat conduction in cross-wavy primary surface heat exchanger,” Appl. Therm. Eng., vol. 76, pp. 272–282, Feb. 2015. DOI: 10.1016/j.applthermaleng.2014.11.026.
  • S. Borjigin et al., “Parameter study on longitudinal heat conduction in a cross-wavy primary surface heat exchanger,” presented at the 1st Thermal and Fluid Engineering Summer Conference, New York City, USA, Aug. 9–12, 2015, TFESC-12658. https://dl.astfe.org/conferences/tfesc,5451756e07e31e0f,721d93c97ae65208.html.
  • S. Borjigin, S. X. Zhang, T. Ma, M. Zeng, and Q. W. Wang, “Performance enhancement of cabinet cooling system by utilizing cross-flow plate heat exchanger,” Energy Convers. Manage., vol. 213, pp. 112854, Jun. 2020. DOI: 10.1016/j.enconman.2020.112854.
  • J. Fernández-Seara, R. Diz, F. J. Uhía, A. Dopazo, and J. M. Ferro, “Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings,” Energ. Convers. Manage., vol. 52, no. 1, pp. 635–640, Jan. 2011. DOI: 10.1016/j.enconman.2010.07.040.
  • C. Y. Yang, L. Chiang, and F. C. Lin, “Development of polymer plate heat exchangers for outdoors telecom cabinet cooling systems,” Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, Aug.16–22, 2015; paper, no. 74, 2015, pp. 16–22.
  • Y. H. Lu, Y. P. Wang, L. Zhu, and Q. Wang, “Enhanced performance of heat recovery ventilator by airflow-induced film vibration (HRV performance enhanced by FIV),” Int. J. Therm. Sci., vol. 49, no. 10, pp. 2037–2041, Oct. 2010. DOI: 10.1016/j.ijthermalsci.2010.06.001.
  • S. Borjigin, T. Ma, M. Zeng, and Q. W. Wang, “A numerical study of small-scale longitudinal heat conduction in plate heat exchangers,” Energies, vol. 11, no. 7, pp. 1727, 2018. DOI: 10.3390/en11071727.
  • CD-adapco. STAR-CD Methodology, 2008.
  • M. Ciofalo, J. Stasiek, and M. W. Collins, “Investigation of flow and heat transfer in corrugated passages—II. Numerical simulations,” Int. J. Heat Mass Transf., vol. 39, no. 1, pp. 165–192, Jan. 1996. DOI: 10.1016/S0017-9310(96)85014-9.
  • L. Zhang and D. F. Che, “Turbulence models for fluid flow and heat transfer between cross-corrugated plates,” Numer. Heat Transf. A, vol. 60, no. 5, pp. 410–440, 2011. DOI: 10.1080/10407782.2011.600583.
  • Specific Heat of Plastics. Wenku, Baidu, 2011 (in Chinese). https://wenku.baidu.com/view/924d10d676a20029bd642dd5.html
  • C. B. Delgado, P. D. Silva, L. C. Pires, and P. D. Gaspar, “Experimental study and numerical simulation of the interior flow in a telecommunications cabinet,” Energy Proced, vol. 142, pp. 3096–3101, Dec. 2017. DOI: 10.1016/j.egypro.2017.12.450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.