162
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect on the Thermal Performance of a Bio-based Phase Change Material with the Addition of Graphite with Surfactants

, , , &

References

  • H. Mehling and L. F. Cabeza, Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications. Berlin, Germany: Springer, 2008.
  • Y. M. Choo and W. Wei, “Salt hydrates as phase change materials for photovoltaics thermal management,” Energy Sci. Eng., vol. 10, no. 5, pp. 1630–1642, 2022. DOI: 10.1002/ese3.1007.
  • N. Xie et al., “Inorganic salt hydrate for thermal energy storage,” Appl. Sci. (Basel), vol. 7, no. 12, pp. 1317, 2017. DOI: 10.3390/app7121317.
  • B. R. Anupam, U. C. Sahoo, and P. Rath, “Phase change materials for pavement applications: a review,” Constr. Build. Mater., vol. 247, pp. 118553, Jun. 2020. DOI: 10.1016/j.conbuildmat.2020.118553.
  • A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renew. Sustain. Energy Rev., vol. 13, no. 2, pp. 318–345, 2009. DOI: 10.1016/j.rser.2007.10.005.
  • B. Eanest Jebasingh, “Thermal conductivity on ternary eutectic fatty acid as phase change material (PCM) by various treated exfoliated graphite nanoplatelets (xGnP),” in Frontiers in Materials Processing, Applications, Research and Technology, Chapter 8, Springer Nature Singapore, pp. 75–84, 2018. DOI: 10.1007/978-981-10-4819-7_8.
  • M. Mehrali et al., “Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material,” Appl. Therm. Eng., vol. 61, no. 2, pp. 633–640, 2013. DOI: 10.1016/j.applthermaleng.2013.08.035.
  • Y. Li, H. Yan, Q. Wang, H. Wang, and Y. Huang, “Structure and thermal properties of decanoic acid/expanded graphite composite phase change materials,” J. Therm. Anal. Calorim., vol. 128, no. 3, pp. 1313–1326, 2017. DOI: 10.1007/s10973-016-6068-4.
  • S. Pincemin, R. Olives, X. Py, and M. Christ, “Highly conductive composites made of phase change materials and graphite for thermal storage,” Sol. Energy Mater. Sol. Cells, vol. 92, no. 6, pp. 603–613, 2008. DOI: 10.1016/j.solmat.2007.11.010.
  • X. Py, R. Olives, and S. Mauran, “Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material,” Int. J. Heat Mass Transf., vol. 44, no. 14, pp. 2727–2737, 2001. DOI: 10.1016/S0017-9310(00)00309-4.
  • J. M. Khodadadi and S. F. Hosseinizadeh, “Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage,” Int. Commun. Heat Mass Transf., vol. 34, no. 5, pp. 534–543, 2007. DOI: 10.1016/j.icheatmasstransfer.2007.02.005.
  • W. Li, Y. Dong, X. Zhang, and X. Liu, “Preparation and performance analysis of graphite additive/paraffin composite phase change materials,” Processes (Basel), vol. 7, no. 7, pp. 447, 2019. DOI: 10.3390/pr7070447.
  • Z. Ling et al., “Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model,” Energy Convers. Manag., vol. 102, pp. 202–208, Sep. 2015. DOI: 10.1016/j.enconman.2014.11.040.
  • F. Wang, J. Liu, X. Fang, and Z. Zhang, “Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance,” Sol. Energy Mater. Sol. Cells, vol. 147, pp. 101–107, Apr. 2016. DOI: 10.1016/j.solmat.2015.12.013.
  • T. Xu et al., “Preparation and thermal energy storage properties of d-Mannitol/expanded graphite composite phase change material,” Sol. Energy Mater. Sol. Cells, vol. 155, pp. 141–146, Oct. 2016. DOI: 10.1016/j.solmat.2016.06.003.
  • C. Ao et al., “Stearic acid/expanded graphite composite phase change material with high thermal conductivity for thermal energy storage,” Energy Rep., vol. 8, pp. 4834–4843, Nov. 2022. DOI: 10.1016/j.egyr.2022.03.172.
  • G. Fang, H. Li, Z. Chen, and X. Liu, “Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials,” Energy (Oxf.), vol. 35, no. 12, pp. 4622–4626, Dec. 2010. DOI: 10.1016/j.energy.2010.09.046.
  • G. Fang, M. Zhao, and P. Sun, “Experimental study of the thermal properties of a fatty acid-modified graphite composite phase change material dispersion system,” J. Energy Storage, vol. 53, pp. 105108, Sep. 2022. DOI: 10.1016/j.est.2022.105108.
  • T. Xiong et al., “Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles,” Sci. Total Environ., vol. 827, pp. 154341, Jun. 2022. DOI: 10.1016/j.scitotenv.2022.154341.
  • S. Zhang, J.-Y. Wu, C.-T. Tse, and J. Niu, “Effective dispersion of multi-wall carbon nano-tubes in hexadecane through physiochemical modification and decrease of supercooling,” Sol. Energy Mater. Sol. Cells, vol. 96, pp. 124–130, Jan. 2012. DOI: 10.1016/j.solmat.2011.09.032.
  • K. Cacua et al., “Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability,” Colloids Surf. A Physicochem. Eng. Asp., vol. 583, pp. 123960, Dec. 2019. DOI: 10.1016/j.colsurfa.2019.123960.
  • D. H. Choi, J. Lee, H. Hong, and Y. T. Kang, “Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application,” Int. J. Refrig., vol. 42, pp. 112–120, Jun. 2014. DOI: 10.1016/j.ijrefrig.2014.02.004.
  • M. Silakhori et al., “Preparation and thermal properties of form-stable phase change materials composed of palmitic acid/polypyrrole/graphene nanoplatelets,” Energy Build., vol. 99, pp. 189–195, Jul. 2015. DOI: 10.1016/j.enbuild.2015.04.042.
  • Y. Zhai, L. Li, J. Wang, and Z. Li, “Evaluation of surfactant on stability and thermal performance of Al2O3-ethylene glycol (EG) nanofluids,” Powder Technol, vol. 343, pp. 215–224, Feb. 2019. DOI: 10.1016/j.powtec.2018.11.051.
  • F. Ordóñez, F. Chejne, E. Pabón, and K. Cacua, “Synthesis of ZrO2 nanoparticles and effect of surfactant on dispersion and stability,” Ceram. Int., vol. 46, no. 8, pp. 11970–11977, Jun. 2020. DOI: 10.1016/j.ceramint.2020.01.236.
  • I. W. Almanassra et al., “An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: a comparison study,” J. Mol. Liq., vol. 304, pp. 111025, Apr. 2020. DOI: 10.1016/j.molliq.2019.111025.
  • A. Gallego et al., “Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent,” Adv. Powder Technol., vol. 31, no. 2, pp. 560–570, Feb. 2020. DOI: 10.1016/j.apt.2019.11.012.
  • M. Nourani, N. Hamdami, J. Keramat, A. Moheb, and M. Shahedi, “Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity,” Renew. Energy, vol. 88, pp. 474–482, Apr. 2016. DOI: 10.1016/j.renene.2015.11.043.
  • I. Madni, C.-Y. Hwang, S.-D. Park, Y.-H. Choa, and H.-T. Kim, “Mixed surfactant system for stable suspension of multiwalled carbon nanotubes,” Colloids Surf. A Physicochem. Eng. Asp., vol. 358, no. 1-3, pp. 101–107, Apr. 2010. DOI: 10.1016/j.colsurfa.2010.01.030.
  • A. H. A. Al-Waeli, M. T. Chaichan, H. A. Kazem, and K. Sopian, “Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems,” Case Stud. Therm. Eng., vol. 13, pp. 100392, Mar. 2019. DOI: 10.1016/j.csite.2019.100392.
  • A. Asadi, M. Asadi, M. Siahmargoi, T. Asadi, and M. Gholami Andarati, “The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: an experimental investigation,” Int. J. Heat Mass Transf., vol. 108, pp. 191–198, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.022.
  • P. K. Das, N. Islam, A. K. Santra, and R. Ganguly, “Experimental investigation of thermophysical properties of Al2O3 –water nanofluid: role of surfactants,” J. Mol. Liq., vol. 237, pp. 304–312, Jul. 2017. DOI: 10.1016/j.molliq.2017.04.099.
  • A. Gimeno-Furio et al., “Stabilization and characterization of a nanofluid based on a eutectic mixture of diphenyl and diphenyl oxide and carbon nanoparticles under high temperature conditions,” Int. J. Heat Mass Transf., vol. 113, pp. 908–913, Oct. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.097.
  • D. Singh et al., “Use of metallic nanoparticles to improve the thermophysical properties of organic heat transfer fluids used in concentrated solar power,” Sol. Energy, vol. 105, pp. 468–478, Jul. 2014. DOI: 10.1016/j.solener.2014.02.036.
  • B. Wei, C. Zou, X. Yuan, and X. Li, “Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications,” Int. J. Heat Mass Transf., vol. 107, pp. 281–287, Apr. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.044.
  • W. S. Sarsam, A. Amiri, S. N. Kazi, and A. Badarudin, “Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids,” Energy Convers. Manag., vol. 116, pp. 101–111, May 2016. DOI: 10.1016/j.enconman.2016.02.082.
  • H. W. Xian, N. A. C. Sidik, and R. Saidur, “Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids,” Int. Commun. Heat Mass Transf., vol. 110, pp. 104389, Jan. 2020. DOI: 10.1016/j.icheatmasstransfer.2019.104389.
  • T. Yousefi, F. Veysi, E. Shojaeizadeh, and S. Zinadini, “An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of flat-plate solar collectors,” Exp. Thermal Fluid Sci., vol. 39, pp. 207–212, May 2012. DOI: 10.1016/j.expthermflusci.2012.01.025.
  • T. Yousefi, F. Veysi, E. Shojaeizadeh, and S. Zinadini, “An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors,” Renew. Energy, vol. 39, no. 1, pp. 293–298, 2012. DOI: 10.1016/j.renene.2011.08.056.
  • E. Shojaeizadeh and F. Veysi, “Development of a correlation for parameter controlling using exergy efficiency optimization of an Al2O3/water nanofluid based flat-plate solar collector,” Appl. Therm. Eng., vol. 98, pp. 1116–1129, Apr. 2016. DOI: 10.1016/j.applthermaleng.2016.01.001.
  • Z. Said et al., “Performance enhancement of a Flat Plate Solar collector using Titanium dioxide nanofluid and Polyethylene Glycol dispersant,” J. Clean. Prod., vol. 92, pp. 343–353, Apr. 2015. DOI: 10.1016/j.jclepro.2015.01.007.
  • S. K. Verma, A. K. Tiwari, and D. S. Chauhan, “Experimental evaluation of flat plate solar collector using nanofluids,” Energy Convers. Manag., vol. 134, pp. 103–115, Feb. 2017. DOI: 10.1016/j.enconman.2016.12.037.
  • Z. Said, R. Saidur, M. A. Sabiha, N. A. Rahim, and M. R. Anisur, “Thermophysical properties of single wall carbon nanotubes and its effect on exergy efficiency of a flat plate solar collector,” Sol. Energy, vol. 115, pp. 757–769, May 2015. DOI: 10.1016/j.solener.2015.02.037.
  • Y. Y. Gan et al., “Thermal conductivity optimization and entropy generation analysis of titanium dioxide nanofluid in evacuated tube solar collector,” Appl. Therm. Eng., vol. 145, pp. 155–164, Dec. 2018. DOI: 10.1016/j.applthermaleng.2018.09.012.
  • S. Sami and N. Etesami, “Improving thermal characteristics and stability of phase change material containing TiO2 nanoparticles after thermal cycles for energy storage,” Appl. Therm. Eng., vol. 124, pp. 346–352, Sep. 2017. DOI: 10.1016/j.applthermaleng.2017.06.023.
  • C. J. Ho and J. Y. Gao, “Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material,” Int. Commun. Heat Mass Transf., vol. 36, no. 5, pp. 467–470, May 2009. DOI: 10.1016/j.icheatmasstransfer.2009.01.015.
  • H. Li et al., “Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids,” Appl. Therm. Eng., vol. 88, pp. 363–368, Sep. 2015. DOI: 10.1016/j.applthermaleng.2014.10.071.
  • J. A. Howard and P. A. Walsh, “An experimental investigation of heat transfer enhancement mechanisms in microencapsulated phase-change material slurry flows,” Heat Transf. Eng., vol. 34, no. 2-3, pp. 223–234, 2013. DOI: 10.1080/01457632.2013.703558.
  • J. Hu, R. Hu, Y. Zhu, and X. Luo, “Experimental investigation on composite phase-change material (CPCM)-based substrate,” Heat Transf. Eng., vol. 37, no. 3-4, pp. 351–358, 2016. DOI: 10.1080/01457632.2015.1052712.
  • P. Manoj Kumar, K. Mylsamy, and P. T. Saravanakumar, “Experimental investigations on thermal properties of nano-SiO2/paraffin phase change material (PCM) for solar thermal energy storage applications,” Energy Sources Recovery Util. Environ. Eff., vol. 42, no. 19, pp. 2420–2433, 2020. DOI: 10.1080/15567036.2019.1607942.
  • H. Faraji, M. Faraji, and M. El Alami, “Numerical study of the transient melting of nano-enhanced phase change material,” Heat Transf. Eng., vol. 42, no. 2, pp. 120–139, 2021. DOI: 10.1080/01457632.2019.1692496.
  • A. Sundaramahalingam and S. Jegadheeswaran, “Heat transfer enhancement of latent heat storage using novel quadruple helical fins,” Heat Transf. Eng., vol. 43, no. 22, pp. 1900–1917, 2022. DOI: 10.1080/01457632.2021.2022306.
  • T. C. Mokhena, M. J. Mochane, J. S. Sefadi, S. V. Motloung, and D. M. Andala, “Thermal conductivity of graphite-based polymer composites,” in Impact of Thermal Conductivity on Energy Technologies, A. Shahzad, Ed. London, England: InTech, Apr. 2018, DOI: 10.5772/intechopen.75676.
  • A. Harris, S. Kazachenko, R. Bateman, J. Nickerson, and M. Emanuel, “Measuring the thermal conductivity of heat transfer fluids via the modified transient plane source (MTPS),” J. Therm. Anal. Calorim., vol. 116, no. 3, pp. 1309–1314, 2014. DOI: 10.1007/s10973-014-3811-6.
  • “Modified Transient Plane Source (MTPS): Theory of Operation,”., Axel Products. [Online]. Available: http://axelproducts.com/downloads/C-Therm_MTPS_Theory_of_Operation.pdf. Accessed: Apr. 26, 2022.
  • N. Mathis and C. Chandler, “Direct thermal conductivity measurement technique,” U.S. Patent 6676287B1, 13 Jan 2004.
  • S. Yu, S.-G. Jeong, O. Chung, and S. Kim, “Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity,” Sol. Energy Mater. Sol. Cells, vol. 120, pp. 549–554, Jan. 2014. DOI: 10.1016/j.solmat.2013.09.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.