59
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimal Experimental Design for the Assessment of Thermophysical Properties in Existing Building Walls

ORCID Icon, , , &

References

  • L. Laurenti, F. Marcotullio, and F. de Monte, “Determination of the thermal resistance of walls through a dynamic analysis of in-situ data,” Int. J. Therm. Sci., vol. 43, no. 3, pp. 297–306, 2004. DOI: 10.1016/j.ijthermalsci.2003.08.007.
  • J. V. Beck and K. J. Arnold, Parameter Estimation in Engineering and Science. New York, NY: John Wiley and Sons edition, 1977.
  • L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models. Number 0930-0325 in Lecture Notes in Statistics. New York, NY: Springer edition, 2019. 10.1007/978-1-4614-6363-4.
  • A. Nenarokomov and D. V. Titov, “Optimal experiment design to estimate the radiative properties of materials,” J. Quant. Spectrosc. Radiat. Transf., vol. 93, no. 1-3, pp. 313–323, 2005. DOI: 10.1016/j.jqsrt.2004.07.036.
  • G. D’Alessandro and F. de Monte, “On the optimum experiment and heating times when estimating thermal properties through the plane source method,” Heat Transf. Eng., vol. 43, no. 3–5, pp. 257–269, 2022. DOI: 10.1080/01457632.2021.1874655.
  • G. D'Alessandro and F. de Monte, “Optimal experiment design for thermal property estimation using a boundary condition of the fourth kind with a time-limited heating period,” Int. J. Heat Mass Transf., vol. 134, pp. 1268–1282, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.035.
  • E. A. Artyukhin and S. A. Budnik, “Optimal planning of measurements in numerical experiment determination of the characteristics of a heat flux,” J. Eng. Phys., vol. 49, no. 6, pp. 1453–1458, 1985. DOI: 10.1007/BF00871299.
  • A. Jumabekova, J. Berger, A. Foucquier, and G. S. Dulikravich, “Searching an optimal experiment observation sequence to estimate the thermal properties of a multilayer wall under real climate conditions,” Int. J. Heat Mass Transf., vol. 155, pp. 119810, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119810.
  • M. Bazargani and F. Kowsary, “Methodology for estimation of local convective heat transfer coefficient for vapor condensation,” Heat Transf. Eng., vol. 36, no. 9, pp. 820–828, 2015. 963420. DOI: 10.1080/01457632.2015.
  • J. R. Howell, M. P. Menguc, and R. Siegel, Thermal Radiation Heat Transfer, 5th ed. Boca Raton, FL: CRC Press, 2010, URL: https://books.google.fr/books?id=FBjSBQAAQBAJ.
  • C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer Berlin, Heidelberg: Springer-Verlag, 1988, DOI: 10.1007/978-3-642-84108-8.
  • S. Gasparin, D. Dutykh, and N. Mendes, “A spectral method for solving heat and moisture transfer through consolidated porous media,” Int. J. Numer. Methods Eng., vol. 117, no. 11, pp. 1143–1170, 2019. DOI: 10.1002/nme.5994.
  • R. Peyret, Spectral Methods for Incompressible Viscous Flow. New York: Springer, 2002.
  • B. Fornberg, A Pratical Guide to Pseudospectral Methods. New York, USA: Cambridge University Press, 1996.
  • F. Liu, X. Ye, and X. Wang, “Efficient Chebyshev spectral method for solving linear elliptic PDEs using quasi-inverse technique,” NMTMA, vol. 4, no. 2, pp. 197–215, 2011. DOI: 10.1017/S100489790000060X.
  • T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009. DOI: 10.1137/07070111X.
  • J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. New York: Dover Publications, 2000.
  • ASME V&V and Committee Members, ASME V&V 20-2009 Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer (V&V20 Committee Chair and principal author), vol. 20. New York: American Society of Mechanical Engineering Edition, 2009.
  • P. J. Roache, “Code verification by the method of manufactured solutions,” J. Fluids Eng., vol. 124, no. 1, pp. 4–10, 2002. DOI: 10.1115/1.1436090.
  • R. L. McMasters, F. de Monte, G. D’Alessandro, and J. V. Beck, “Verification of ansys and matlab heat conduction results using an “intrinsically” Verified Exact Analytical Solution,” J. Verification, Validation Uncertain. Quant., vol. 6, no. 2, pp. 21005, 2021. DOI: 10.1115/1.4050610.
  • C. A. A. Mota, H. R. B. Orlande, M. M. De Carvalho, V. Kolehmainen, and J. P. Kaipio, “Bayesian estimation of temperature-dependent thermophysical properties and transient boundary heat flux,” Heat Transf. Eng., vol. 31, no. 7, pp. 570–580, Jul. 2010. DOI: 10.1080/01457630903425635.
  • V. Tahmasbi and S. Noori, “Application of Levenberg–Marquardt method for estimation of the thermophysical properties and thermal boundary conditions of decomposing materials,” Heat Transf. Eng, vol. 41, no. 5, pp. 449–475, 2020. DOI: 10.1080/01457632.2018.1558010.
  • D. Ucinski, Optimal Measurement Methods for Distributed Parameter System Identification. Boca Raton, FL: CRC Press, 2004.
  • J. Berger and B. Kadoch, “Estimation of the thermal properties of an historic building wall by combining modal identification method and optimal experiment design,” Build. Environ., vol. 185, pp. 107065, 2020. DOI: 10.1016/j.buildenv.2020.107065.
  • J. Berger, T. Busser, D. Dutykh, and N. Mendes, “An efficient method to estimate sorption isotherm curve coefficients,” Inverse Probl. Sci. Eng., vol. 27, no. 6, pp. 735–772, 2019. 1495720. DOI: 10.1080/17415977.2018.
  • J. Berger, S. Gapasrin, and D. Uciński, “Optimal sensor location for inverse heat conduction problem in multilayered building walls,” presented at the 2022 Société Française de Thermique (SFT) Conference Velenciennes, France, 2022, pp. 1–8.
  • A. Atkinson, A. Donev, and R. Tobias, Optimum Experimental Designs, with SAS. Oxford Statistical Science Series. Oxford, New York: Oxford University Press, 2007.
  • D. Ucinski, “E-optimum sensor selection for estimation of subsets of parameters,” Measurement, vol. 187, pp. 110286, 2022. DOI: 10.1016/j.measurement.2021.110286.
  • J. Berger, S. Gasparin, W. Mazuroski, and N. Mendes, “An efficient two-dimensional heat transfer model for building envelopes,” Numeric. Heat Transf. A: Appl., vol. 79, no. 3, pp. 163–194, Nov. 2020. DOI: 10.1080/10407782.2020.1836936.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.