65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal and Flow Analysis of Air in a Uniformly Heated Circular Channel with an Inlet Flap Obstruction in Laminar, Transitional, and Turbulent Flow Regimes

, , &

References

  • S. Bhattacharyya, A. C. Benim, H. Chattopadhyay and A. Banerjee, “Experimental investigation of heat transfer performance of corrugated tube with spring tape inserts,” Exp. Heat Transf., vol. 32, no. 5, pp. 411–425, Oct, 2019. DOI: 10.1080/08916152.2018.1531955.
  • S. Bhattacharyya, H. Chattopadhyay and S. Bandyopadhyay, “Numerical study on heat transfer enhancement through a circular duct fitted with centre-trimmed twisted tape,” IJHT, vol. 34, no. 3, pp. 401–406, Sep. 2016. DOI: 10.18280/ijht.340308.
  • S. Bhattacharyya, H. Chattopadhyay, R. Biswas, D. R. E. Ewim and Z. Huan, “Influence of inlet turbulence intensity on transport phenomenon of modified diamond cylinder: a numerical study,” Arab. J. Sci. Eng., vol. 45, no. 2, pp. 1051–1058, Nov, 2020. DOI: 10.1007/s13369-019-04231-9.
  • S. Bhattacharyya, H. Chattopadhyay and A. C. Benim, “Heat transfer enhancement of laminar flow of ethylene glycol through a square channel fitted with angular cut wavy strip,” Proc. Eng., vol. 157, pp. 19–28, Aug, 2016. DOI: 10.1016/j.proeng.2016.08.333.
  • S. Bhattacharyya, S. Saha and S. K. Saha, “Laminar flow heat transfer enhancement in a circular tube having integral transverse rib roughness and fitted with centre-cleared twisted-tape,” Exp. Therm. Fluid Sci., vol. 44, pp. 727–735, Jan. 2013. DOI: 10.1016/j.expthermflusci.2012.09.016.
  • S. K. Saha, S. Bhattacharyya and G. L. Dayanidhi, “Enhancement of heat transfer of laminar flow of viscous oil through a circular tube having integral axial rib roughness and fitted with helical screw-tape inserts,” Heat Trans Res., vol. 43, no. 3, pp. 207–227, 2012. DOI: 10.1615/HeatTransRes.2012004268.
  • S. Bhattacharyya and S. K. Saha, “Thermohydraulics of laminar flow through a circular tube having integral helical rib roughness and fitted with centre-cleared twisted-tape,” Exp. Therm. Fluid Sci., vol. 42, pp. 154–162, Oct. 2012. DOI: 10.1016/j.expthermflusci.2012.05.002.
  • S. Bhattacharyya, D. K. Vishwakarma and M. K. Soni, “Heat transfer and pressure drop in transitional flow: a short review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1080, no. 1, pp. 012050, Feb, 2021. DOI: 10.1088/1757-899X/1080/1/012050.
  • S. Bhattacharyya, D. K. Vishwakarma, S. Roy, R. Biswas and M. Moghimi Ardekani, “Applications of heat transfer enhancement techniques: a state-of-the-art review,” in Inverse Heat Conduction Heat Exchangers. London: IntechOpen, Jun, 2020. DOI: 10.5772/intechopen.92873.
  • S. Bhattacharyya, et al., “Turbulent flow heat transfer through a circular tube with novel hybrid grooved tape inserts: thermohydraulic analysis and prediction by applying machine learning model,” Sustainability, vol. 13, no. 6, pp. 3068, Mar. 2021. DOI: 10.3390/su13063068.
  • S. Bhattacharyya, et al., “Thermodynamics and heat transfer study of a circular tube embedded with novel perforated angular-cut alternate segmental baffles,” J. Therm. Anal. Calorim., vol. 145, no. 3, pp. 1445–1465, Aug. 2021. DOI: 10.1007/s10973-021-10718-1.
  • B. Souayeh, S. Bhattacharyya, N. Hdhiri and M. W. Alam, “Heat and fluid flow analysis and ann-based prediction of a novel spring corrugated tape,” Sustain, vol. 13, no. 6, pp. 3023, Mar. 2021. DOI: 10.3390/su13063023.
  • A. J. Ghajar and K. F. Madon, “Pressure drop measurements in the transition region for a circular tube with three different inlet configurations,” Exp. Therm. Fluid Sci., vol. 5, no. 1, pp. 129–135, 1992. 16 September 1991, Available online 11 February 2003. DOI: 10.1016/0894-1777(92)90062-A.
  • A. J. Ghajar and L.-M. Tam, “Heat transfer measurements and correlations in the transition region for a circular tube with three different inlet configurations,” Exp. Therm. Fluid Sci., vol. 8, no. 1, pp. 79–90, Jan. 1994. DOI: 10.1016/0894-1777(94)90075-2.
  • L. M. Tam and A. J. Ghajar, “Effect of inlet geometry and heating on the fully developed friction factor in the transition region of a horizontal tube,” Exp. Therm. Fluid Sci., vol. 15, no. 1, pp. 52–64, Jul. 1997. DOI: 10.1016/S0894-1777(97)00035-6.
  • L. M. Tam and A. J. Ghajar, “The unusual behavior of local heat transfer coefficient in a circular tube with a bell-mouth inlet,” Exp. Therm. Fluid Sci., vol. 16, no. 3, pp. 187–194, Mar. 1998. DOI: 10.1016/S0894-1777(97)10019-X.
  • A. J. Ghajar, L. M. Tam and S. C. Tam, “Improved heat transfer correlation in the transition region for a circular tube with three inlet configurations using artificial neural networks,” Heat Transf. Eng., vol. 25, no. 2, pp. 30–40, 2004. DOI: 10.1080/01457630490276097. Published Online on 17 August 2010.
  • A. J. Ghajar, C. C. Tang and W. L. Cook, “Experimental investigation of friction factor in the transition region for water flow in minitubes and microtubes,” Heat Transf. Eng., vol. 31, no. 8, pp. 646–657, 2010. DOI: 10.1080/01457630903466613. Published online: 14 Jul 2010.
  • H. K. Tam, L. M. Tam and A. J. Ghajar, “Experimental analysis of the single-phase heat transfer and friction factor inside the horizontal internally micro-fin tube,” presented at the ASME/JSME 2011 8th Ther Eng Joint Conference, Paper no. AJTEC201144555, Honolulu, Hawaii, USA, Mar 2011. DOI: 10.1115/AJTEC2011-44555.
  • H. K. Tam, L. M. Tam and A. J. Ghajar, “Effect of inlet geometries and heating on the entrance and fully-developed friction factors in the laminar and transition regions of a horizontal tube,” Exp. Therm. Fluid Sci., vol. 44, pp. 680–696, Jan. 2013. DOI: 10.1016/j.expthermflusci.2012.09.008.
  • A. J. Ghajar, “Heat transfer and pressure drop in the transition region of smooth horizontal circular tubes with different inlet configurations,” in Advances in Heat Transfer, vol. 51. Cambridge, MA: Academic Press, 2019, pp. 1–53. Available online 24 June 2019.
  • A. J. Ghajar and C. C. Tang, “Heat transfer measurements, flow pattern maps, and flow visualization for non-boiling two-phase flow in horizontal and slightly inclined pipe,” Heat Transf. Eng., vol. 28, no. 6, pp. 525–540, 2007. DOI: 10.1080/01457630701193906. Published online: 27 Apr 2007.
  • L. M. Tam and A. J. Ghajar, “Transitional heat transfer in plain horizontal tubes,” Heat Transf. Eng., vol. 27, no. 5, pp. 23–38, 2006. DOI: 10.1080/01457630600559538. Published online: 23 Feb 2007.
  • L. M. Tam, A. J. Ghajar, H. K. Tam and S. C. Tam, “Development of a heat transfer correlation for the transitional flow in a horizontal tube using support vector machines,” presented at the Proc the 2008 ASME Summer Heat Trans Conference, Jacksonville, FL, August 10-14, HT2008-56093, pp. 527–536, Jul. 2008. DOI: 10.1115/HT2008-56093.
  • J. P. Meyer and J. A. Olivier, “Transitional flow inside enhanced tubes for fully developed and developing flow with different types of inlet disturbances: part I – Adiabatic pressure drops,” Int. J. Heat Mass Transf., vol. 54, no. 7–8, pp. 1587–1597, Mar. 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.11.027.
  • J. P. Meyer and J. A. Olivier, “Transitional flow inside enhanced tubes for fully developed and developing flow with different types of inlet disturbances: part II–heat transfer,” Int. J. Heat Mass Transf., vol. 54, no. 7–8, pp. 1598–1607, Mar. 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.11.026.
  • S. Osman, M. Sharifpur and J. P. Meyer, “Experimental investigation of convection heat transfer in the transition flow regime of aluminium oxide-water nanofluids in a rectangular channel,” Int. J. Heat Mass Transf., vol. 133, pp. 895–902, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.169.
  • J. P. Meyer, T. J. McKrell and K. Grote, “The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure drop characteristics in the transitional flow regime of smooth tubes,” Int. J. Heat Mass Transf., vol. 58, no. 1–2, pp. 597–609, Mar. 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.11.074.
  • J. P. Meyer and S. M. Abolarin, “Heat transfer and pressure drop in the transitional flow regime for a smooth circular tube with twisted tape inserts and a square-edged inlet,” Int. J. Heat Mass Transf., vol. 117, pp. 11–29, Feb. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.103.
  • S. M. Abolarin, M. Everts and J. P. Meyer, “The influence of peripheral u-cut twisted tapes and ring inserts on the heat transfer and pressure drop characteristics in the transitional flow regime,” Int. J. Heat Mass Transf., vol. 132, pp. 970–984, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.051.
  • S. M. Abolarin, M. Everts and J. P. Meyer, “Heat transfer and pressure drop characteristics of alternating clockwise and counter clockwise twisted tape inserts in the transitional flow regime,” Int. J. Heat Mass Transf., vol. 133, pp. 203–217, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.107.
  • J. P. Meyer, A. I. Bashir and M. Everts, “Single-phase mixed convective heat transfer and pressure drop in the laminar and transitional flow regimes in smooth inclined tubes heated at a constant heat flux,” Exp. Therm. Fluid Sci., vol. 109, pp. 109890, Dec. 2019. DOI: 10.1016/j.expthermflusci.2019.109890.
  • M. Everts, S. Bhattacharyya, A. I. Bashir and J. P. Meyer, “Heat transfer characteristics of assisting and opposing laminar flow through a vertical circular tube at low Reynolds numbers,” Appl. Therm. Eng., vol. 179, pp. 115696, Oct. 2020. DOI: 10.1016/j.applthermaleng.2020.115696.
  • S. Bhattacharyya, M. Everts, A. I. Bashir and J. P. Meyer, “Experimental and Numerical Investigation of the Heat Transfer Characteristics of Laminar Flow in a Vertical Circular Tube at Low Reynolds Numbers,” in C. Wen and Y. Yan (eds.), Advances in Heat Transfer and Thermal Engineering, pp. 669–674. Springer, Singapore, Jan, 2021. First Online: 02 June 2021. DOI: 10.1007/978-981-33-4765-6_115.
  • J. P. Meyer and J. A. Olivier, “Heat transfer and pressure drop characteristics of smooth horizontal tubes in the transitional flow regime,” Heat Transf. Eng., vol. 35, no. 14–15, pp. 1246–1253, 2014. DOI: 10.1080/01457632.2013.876793. Published online: 04 Mar 2014.
  • J. A. Olivier and J. P. Meyer, “Single-phase heat transfer and pressure drop of the cooling of water inside smooth tubes for transitional flow with different inlet geometries (RP-1280),” HVAC&R Res., vol. 16, no. 4, pp. 471–496, 2010. DOI: 10.1080/10789669.2010.10390916. Accepted 22 Mar 2010, Published online: 22 Feb 2011.
  • T. Wei and J. Abraham, “Heat transfer regimes in fully developed circular tube flows, a map of flow regimes,” Int. Commun. Heat Mass Transf., vol. 104, pp. 147–152, May 2019. DOI: 10.1016/j.icheatmasstransfer.2019.02.006.
  • L. Olsen, S. Bhattacharyya, L. Cheng, W. Minkowycz and J. Abraham, “Heat transfer enhancement for internal flows with a centrally located circular obstruction and the impact of buoyancy,” Heat Transf. Eng., vol. 43, no. 21, pp. 1789–1805, 2022. DOI: 10.1080/01457632.2021.2016129. Published online: 19 Dec 2021.
  • J. P. Abraham, E. M. Sparrow, J. M. Gorman, Y. Zhao and W. J. Minkowycz, “Application of an intermittency model for laminar, transitional, and turbulent internal flows,” J. Fluids Eng. Trans. ASME, vol. 141, no. 7, pp. 071204, Jul. 2019. DOI: 10.1115/1.4042664.
  • E. M. Sparrow, J. M. Gorman, K. S. Friend and J. P. Abraham, “Flow regime determination for finned heat exchanger surfaces with dimples/protrusions,” Numer. Heat Transf. A Appl., vol. 63, no. 4, pp. 245–256, 2013. DOI: 10.1080/10407782.2013.730450. Accepted 26 Aug 2012, Published online: 19 Nov 2012.
  • T. Gebreegziabher, E. M. Sparrow, J. P. Abraham, E. Ayorinde and T. Singh, “High-frequency pulsatile pipe flows encompassing all flow regimes,” Numer. Heat Transf. A Appl., vol. 60, no. 10, pp. 811–826, 2011. DOI: 10.1080/10407782.2011.627794. Accepted 12 Sep 2011, Published online: 05 Dec 2011.
  • J. P. Abraham, E. M. Sparrow, J. C. K. Tong and D. W. Bettenhausen, “Internal flows which transist from turbulent through intermittent to laminar,” Int. J. Therm. Sci., vol. 49, no. 2, pp. 256–263, Feb. 2010. DOI: 10.1016/j.ijthermalsci.2009.07.013.
  • R. D. Lovik, J. P. Abraham, W. J. Minkowycz and E. M. Sparrow, “Laminarization and turbulentization in a pulsatile pipe flow,” Numer. Heat Transf. A Appl., vol. 56, no. 11, pp. 861–879, 2009. DOI: 10.1080/10407780903466568. Accepted 17 Oct 2009, Published online: 21 Dec 2009.
  • W. J. Minkowycz, J. P. Abraham and E. M. Sparrow, “Numerical simulation of laminar breakdown and subsequent intermittent and turbulent flow in parallel-plate channels: effects of inlet velocity profile and turbulence intensity,” Int. J. Heat Mass Transf., vol. 52, no. 17–18, pp. 4040–4046, Aug. 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.03.041.
  • J. P. Abraham, E. M. Sparrow and J. C. K. Tong, “Heat transfer in all pipe flow regimes: laminar, transitional/intermittent, and turbulent,” Int. J. Heat Mass Transf., vol. 52, no. 3–4, pp. 557–563, Jan. 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.07.009.
  • J. P. Abraham, E. M. Sparrow and J. C. K. Tong, “Breakdown of laminar pipe flow into transitional intermittency and subsequent attainment of fully developed intermittent or turbulent flow,” Numer. Heat Transf. B Fundam., vol. 54, no. 2, pp. 103–115, 2008. DOI: 10.1080/10407790802156178. Accepted 07 Apr 2008, Published online: 18 Jun 2008.
  • S. Kline and F. McClintock, “Describing uncertainties in single-sample experiments,” Mech. Eng., vol. 75, no. 1, pp. 3–8, 1953.
  • Y. A. Çengel and A. J. Ghajar, Heat and Mass Tansfer: Fundamentals & Applications, 6th ed., New York, NY: McGraw-Hill Education, 2020.
  • F. M. White, Fluid Mechanics, 7th ed. New York, NY: McGraw-Hill, 2011.
  • J. P. Meyer, M. Everts, N. Coetzee, K. Grote and M. Steyn, “Heat transfer coefficients of laminar, transitional, quasi-turbulent and turbulent flow in circular tubes,” Int. Commun. Heat Mass Transf., vol. 105, pp. 84–106, Jun. 2019. DOI: 10.1016/j.icheatmasstransfer.2019.03.016.
  • S. P. Sutera and R. Skalak, “The history of Poiseuille’s law,” Annu. Rev. Fluid Mech., vol. 25, no. 1, pp. 1–20, Jan. 1993. DOI: 10.1146/annurev.fl.25.010193.000245.
  • H. Blasius, “Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten,” in Mitteilungen Über Forschungsarbeiten Auf Dem Gebiete Des Ingenieurwesens, vol. 131. Berlin, Heidelberg, Germany: Springer, 1913, pp. 1–41. DOI: 10.1007/978-3-662-02239-9_1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.