191
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical Investigation of Phase Change Material-Based Hybrid Battery Thermal Management System for Mass Optimization

, &

References

  • W. Wu, X. Yang, G. Zhang, K. Chen and S. Wang, “Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system,” Energy Convers. Manag., vol. 138, pp. 486–492, Apr. 2017. DOI: 10.1016/j.enconman.2017.02.022.
  • H. Liu, Z. Wei, W. He and J. Zhao, “Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review,” Energy Convers. Manag., vol. 150, pp. 304–330, 2017. Oct DOI: 10.1016/j.enconman.2017.08.016.
  • D. Bernardi, E. Pawlikowski and J. Newman, “A general energy balance for battery systems,” J. Electrochem. Soc., vol. 132, no. 1, pp. 5–12, Jan. 1985. DOI: 10.1149/1.2113792.
  • S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser and M. Fowler, “Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions,” Appl. Therm. Eng., vol. 96, pp. 190–199, Mar. 2016. DOI: 10.1016/j.applthermaleng.2015.11.019.
  • S. S. Zhang, K. Xu and T. R. Jow, “The low temperature performance of Li-ion batteries,” J. Power Sources, vol. 115, no. 1, pp. 137–140, Mar. 2003. DOI: 10.1016/S0378-7753(02)00618-3.
  • S. Al Hallaj and J. R. Selman, “A novel thermal management system for electric vehicle batteries using phase-change material,” J. Electrochem. Soc., vol. 147, no. 9, pp. 3231, 2000. DOI: 10.1149/1.1393888.
  • R. Mahamud and C. Park, “Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity,” J. Power Sources, vol. 196, no. 13, pp. 5685–5696, Jul. 2011. DOI: 10.1016/j.jpowsour.2011.02.076.
  • C. Park and A. K. Jaura, “Dynamic thermal model of Li-Ion battery for predictive behavior in hybrid and fuel cell vehicles,” SAE Technical Paper 2003-01-2286. 2003. DOI: 10.4271/2003-01-2286.
  • T. Özdemir, A. Amini, Ö. Ekici and M. Köksal, “Experimental assessment of the lumped lithium ion battery model at different operating conditions,” Heat Transf. Eng., vol. 43, no. 3-5, pp. 314–325, 2022. DOI: 10.1080/01457632.2021.1874666.
  • D. Zou, et al., “Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module,” Energy Convers. Manag., vol. 180, pp. 1196–1202, Jan. 2019. DOI: 10.1016/j.enconman.2018.11.064.
  • Z. Ling, W. Lin, Z. Zhang and X. Fang, “Computationally efficient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment,” Appl. Energy, vol. 259, pp. 114120, Feb. 2020. DOI: 10.1016/j.apenergy.2019.114120.
  • Z. Lu, et al., “Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement,” Appl. Therm. Eng, vol. 136, pp. 28–40, May 2018. DOI: 10.1016/j.applthermaleng.2018.02.080.
  • Z. Gao, et al., “Thermal performance of thermal management system coupling composite phase change material to water cooling with double s-shaped micro-channels for prismatic lithium-ion battery,” J. Energy Storage, vol. 45, pp. 103490, Jan. 2022. DOI: 10.1016/j.est.2021.103490.
  • A. Hussain, et al., “Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials,” Int. J. Therm. Sci, vol. 124, pp. 23–35, Feb. 2018. DOI: 10.1016/j.ijthermalsci.2017.09.019.
  • J. Zhang, et al., “Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management,” Energy Convers. Manag., vol. 204, pp. 112319, Jan. 2020. DOI: 10.1016/j.enconman.2019.112319.
  • E. M. Alawadhi, “Thermal insulation for a pipe using phase change material,” Heat Transf. Eng., vol. 26, no. 8, pp. 32–40, 2005. DOI: 10.1080/01457630591003745.
  • F. L. Tan and S. C. Fok, “Numerical investigation of phase change material-based heat storage unit on cooling of mobile phone,” Heat Transf. Eng., vol. 33, no. 6, pp. 494–504, 2012. DOI: 10.1080/01457632.2012.624852.
  • G. Jiang, J. Huang, Y. Fu, M. Cao and M. Liu, “Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management,” Appl. Therm. Eng., vol. 108, pp. 1119–1125, Sep. 2016. DOI: 10.1016/j.applthermaleng.2016.07.197.
  • G. K. Marri and C. Balaji, “Experimental and numerical investigations on a phase change material based heat sink with symbiotically joined heat pipe,” Heat Transf. Eng., vol. 42, no. 1, pp. 23–40, 2021. DOI: 10.1080/01457632.2019.1685241.
  • B. Buonomo, D. Ercole, O. Manca and S. Nardini, “Numerical analysis on a latent thermal energy storage system with phase change materials and aluminum foam,” Heat Transf. Eng., vol. 41, no. 12, pp. 1075–1084, 2020. DOI: 10.1080/01457632.2019.1600875.
  • Z. An, X. Chen, L. Zhao and Z. Gao, “Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling,” Appl. Therm. Eng., vol. 163, pp. 114345, Dec. 2019. DOI: 10.1016/j.applthermaleng.2019.114345.
  • P. Qin, et al., “Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material,” Energy Convers. Manag., vol. 195, pp. 1371–1381, Sep. 2019. DOI: 10.1016/j.enconman.2019.05.084.
  • W. Song, et al., “Thermal management of standby battery for outdoor base station based on the semiconductor thermoelectric device and phase change materials,” Appl. Therm. Eng., vol. 137, pp. 203–217, Jun. 2018. DOI: 10.1016/j.applthermaleng.2018.03.072.
  • A. Siahpush, J. O’Brien, J. Crepeau and P. Sabharwall, “Experimental and Scale Analysis of a Solid/Liquid Phase Change Thermal Energy Storage System,” Heat Transf. Eng., vol. 40, no. 19, pp. 1600–1618, 2019. DOI: 10.1080/01457632.2018.1480878.
  • R. D. Jilte, R. Kumar, M. H. Ahmadi and L. Chen, “Battery thermal management system employing phase change material with cell-to-cell air cooling,” Appl. Therm. Eng., vol. 161, pp. 114199, Oct. 2019. DOI: 10.1016/j.applthermaleng.2019.114199.
  • M. Safdari, R. Ahmadi and S. Sadeghzadeh, “Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management,” Energy, vol. 193, pp. 116840, Feb. 2020. DOI: 10.1016/j.energy.2019.116840.
  • Y. Lv, G. Liu, G. Zhang and X. Yang, “A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules,” J. Power Sources, vol. 468, pp. 228398, Aug. 2020. DOI: 10.1016/j.jpowsour.2020.228398.
  • R. Jilte, A. Afzal and S. Panchal, “A novel battery thermal management system using nano-enhanced phase change materials,” Energy, vol. 219, pp. 119564, Mar. 2021. DOI: 10.1016/j.energy.2020.119564.
  • Z. Ling, F. Wang, X. Fang, X. Gao and Z. Zhang, “A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling,” Appl. Energy, vol. 148, pp. 403–409, Jun. 2015. DOI: 10.1016/j.apenergy.2015.03.080.
  • S. A. Khateeb, M. M. Farid, J. R. Selman and S. Al-Hallaj, “Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter,” J. Power Sources, vol. 128, no. 2, pp. 292–307, Apr. 2004. DOI: 10.1016/j.jpowsour.2003.09.070.
  • Z. Ling, et al., “Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology,” Appl. Energy, vol. 228, pp. 777–788, Oct. 2018. DOI: 10.1016/j.apenergy.2018.06.143.
  • Y. Li, et al., “Optimization of thermal management system for Li-ion batteries using phase change material,” Appl. Therm. Eng., vol. 131, pp. 766–778, Feb. 2018. DOI: 10.1016/j.applthermaleng.2017.12.055.
  • J. Weng, et al., “Optimization of the detailed factors in a phase-change-material module for battery thermal management,” Int. J. Heat Mass Transf., vol. 138, pp. 126–134, Aug. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.050.
  • A. Verma, S. Shashidhara and D. Rakshit, “A comparative study on battery thermal management using phase change material (PCM),” Therm. Sci. Eng. Prog., vol. 11, pp. 74–83, Jun. 2019. DOI: 10.1016/j.tsep.2019.03.003.
  • N. Javani, I. Dincer, G. F. Naterer and B. S. Yilbas, “Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles,” Int. J. Heat Mass Transf., vol. 72, pp. 690–703, May 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.076.
  • B. Wang, et al., “Study of non-uniform temperature and discharging distribution for lithium-ion battery modules in series and parallel connection,” Appl. Therm. Eng., vol. 168, pp. 114831, Mar. 2020. DOI: 10.1016/j.applthermaleng.2019.114831.
  • T. Wang, K. J. Tseng and J. Zhao, “Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model,” Appl. Therm. Eng., vol. 90, pp. 521–529, Nov. 2015. DOI: 10.1016/j.applthermaleng.2015.07.033.
  • R. Kizilel, et al., “Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature,” J. Power Sources, vol. 183, no. 1, pp. 370–375, Aug. 2008. DOI: 10.1016/j.jpowsour.2008.04.050.
  • F. He, X. Li and L. Ma, “Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells,” Int. J. Heat Mass Transf., vol. 72, pp. 622–629, May 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.01.038.
  • F. He and L. Ma, “Thermal management in hybrid power systems using cylindrical and prismatic battery cells,” Heat Transf. Eng., vol. 37, no. 6, pp. 581–590, 2016. DOI: 10.1080/01457632.2015.1060776.
  • L. H. Saw, et al., “Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling,” Appl. Energy, vol. 177, pp. 783–792, Sep. 2016. DOI: 10.1016/j.apenergy.2016.05.122.
  • X. Li, F. He and L. Ma, “Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation,” J. Power Sources, vol. 238, pp. 395–402, 2013. Sep. DOI: 10.1016/j.jpowsour.2013.04.073.
  • F. Samimi, A. Babapoor, M. Azizi and G. Karimi, “Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers,” Energy, vol. 96, pp. 355–371, 2016. Feb DOI: 10.1016/j.energy.2015.12.064.
  • N. Bonyadi, S. K. Sömek, C. C. Özalevli, D. Baker and İ. Tarı, “Numerical analysis of phase change material characteristics used in a thermal energy storage device,” Heat Transf. Eng., vol. 39, no. 3, pp. 268–276, 2018. DOI: 10.1080/01457632.2017.1295741.
  • B. Kamkari, H. Shokouhmand and F. Bruno, “Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure,” Int. J. Heat Mass Transf., vol. 72, pp. 186–200, May 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.01.014.
  • E. M. Alawadhi, “Thermal analysis of a pipe insulation with a phase change material: material selection and sizing,” Heat Transf. Eng., vol. 29, no. 7, pp. 624–631, 2008. DOI: 10.1080/01457630801922469.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.