58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental Investigation to Elucidate the Temporal Effect of Nanofluids on the Thermal Performance of Heat Pipes

, & ORCID Icon

References

  • S. D. Garner, “Heat pipes for electronics cooling applications,” Electron. Cool., vol. 2, no. 3, pp. 18–23, Sep. 1996.
  • A. A. El-Nasr and S. M. El-Haggar, “Effective thermal conductivity of heat pipes,” Heat Mass Transf., vol. 32, no. 1-2, pp. 97–101, Nov. 1996. DOI: 10.1007/s002310050097.
  • S. Lohrasbi, M. Gorji-Bandpy, and D. D. Ganji, “Thermal penetration depth enhancement in latent heat thermal energy storage system in the presence of heat pipe based on both charging and discharging processes,” Energy Convers. Manag., vol. 148, pp. 646–667, Sep. 2017. DOI: 10.1016/j.enconman.2017.06.034.
  • F. L. Tan and C. P. Tso, “Cooling of mobile electronic devices using phase change materials,” Appl. Therm. Eng., vol. 24, no. 2-3, pp. 159–169, Feb. 2004. DOI: 10.1016/j.applthermaleng.2003.09.005.
  • D. Reay and A. Harvey, “The role of heat pipes in intensified unit operations,” Appl. Therm. Eng., vol. 57, no. 1-2, pp. 147–153, Aug. 2013. DOI: 10.1016/j.applthermaleng.2012.04.002.
  • T. K. Salem, F. S. Khosroshahi, M. Arık, M. O. Hamdan, and M. Budakli, “Numerical and experimental analysis of a heat-pipe-embedded printed circuit board for solid state lighting applications,” Exp. Heat Transf., vol. 32, no. 1, pp. 1–13, 2019. DOI: 10.1080/08916152.2017.1397818.
  • W. Chun, Y. H. Kang, H. Y. Kwak, and Y. S. Lee, “An experimental study of the utilization of heat pipes for solar water heaters,” Appl. Therm. Eng., vol. 19, no. 8, pp. 807–817, Aug. 1999. DOI: 10.1016/S1359-4311(98)00096-9.
  • S. Rittidech and S. Wannapakne, “Experimental study of the performance of a solar collector by closed-end oscillating heat pipe (CEOHP),” Appl. Therm. Eng., vol. 27, no. 11-12, pp. 1978–1985, Aug. 2007. DOI: 10.1016/j.applthermaleng.2006.12.005.
  • National Research Council, NASA Space Technology Roadmaps and Priorities: Restoring NASA’s Technological Edge and Paving the Way for a New Era in Space. Washington, DC, USA: The National Academies Press, 2012.
  • Y. H. Yau, “Application of a heat pipe heat exchanger to dehumidification enhancement in a HVAC system for tropical climates-a baseline performance characteristics study,” Int. J. Therm. Sci., vol. 46, no. 2, pp. 164–171, Feb. 2007. DOI: 10.1016/j.ijthermalsci.2006.02.006.
  • R. Hopkins, A. Faghri, and D. Khrustalev, “Flat miniature heat pipes with micro capillary grooves,” J. Heat Transf., vol. 121, no. 1, pp. 102–109, Feb. 1999. DOI: 10.1115/1.2825922.
  • N. Putra, “Design, manufacturing and testing of a portable vaccine carrier box employing thermoelectric module and heat pipe,” J. Med. Eng. Technol., vol. 33, no. 3, pp. 232–237, 2009. DOI: 10.1080/03091900802454517.
  • C. Guo et al., “Effects of filling ratio, geometry parameters and coolant temperature on the heat transfer performance of a wraparound heat pipe,” Appl. Therm. Eng., vol. 200, pp. 117724, Jan. 2022. DOI: 10.1016/j.applthermaleng.2021.117724.
  • M. M. Sarafraz and F. Hormozi, “Experimental study on the thermal performance and efficiency of a copper made thermosyphon heat pipe charged with alumina-glycol based nanofluids,” Powder Technol., vol. 266, pp. 378–387, Nov. 2014. DOI: 10.1016/j.powtec.2014.06.053.
  • Y. H. Diao, S. Wang, C. Z. Li, Y. H. Zhao, and T. T. Zhu, “Experimental study on the heat transfer characteristics of a new type flat micro heat pipe heat exchanger with latent heat thermal energy storage,” Exp. Heat Transf., vol. 30, no. 2, pp. 91–111, 2017. DOI: 10.1080/08916152.2016.1179355.
  • D. S. Naruka, R. Dwivedi, and P. K. Singh, “Experimental inquisition of heat pipe: performance evaluation for different fluids,” Exp. Heat Transf., vol. 33, no. 7, pp. 668–682, 2020. DOI: 10.1080/08916152.2020.1713254.
  • E. G. Jung and J. H. Boo, “Enhancement of the maximum heat transfer rate of the heat pipe through the bypass line,” Appl. Therm. Eng., vol. 198, pp. 117461, Nov. 2021. DOI: 10.1016/j.applthermaleng.2021.117461.
  • M. J. Gukeh, G. Damoulakis, and C. M. Megaridis, “Low-profile heat pipe consisting of wick-lined and non-adiabatic wickless wettability-patterned surfaces,” Appl. Therm. Eng., vol. 211, pp. 118433, Jul. 2022. DOI: 10.1016/j.applthermaleng.2022.118433.
  • C. Liu et al., “Experimental study on temperature uniformity and heat transfer performance of nitrogen loop heat pipe with large area and multi-heat source,” Appl. Therm. Eng., vol. 210, pp. 118344, Jun. 2022. DOI: 10.1016/j.applthermaleng.2022.118344.
  • X. M. Zhang, “Experimental study of a pulsating heat pipe using FC-72, ethanol, and water as working fluids,” Exp. Heat Transf., vol. 17, no. 1, pp. 47–67, 2004. DOI: 10.1080/08916150490246546.
  • S. M. Peyghambarzadeh, H. Hallaji, M. R. Bohloul, and N. Aslanzadeh, “Heat transfer and Marangoni flow in a circular heat pipe using self-rewetting fluids,” Exp. Heat Transf., vol. 30, no. 3, pp. 218–234, 2017. DOI: 10.1080/08916152.2016.1233148.
  • Z. Tian et al., “Experimental evaluation on heat transfer limits of sodium heat pipe with screen mesh for nuclear reactor system,” Appl. Therm. Eng., vol. 209, pp. 118296, Jun. 2022. DOI: 10.1016/j.applthermaleng.2022.118296.
  • A. Faghri, “Review and advances in heat pipe science and technology,” J. Heat Transf., vol. 134, no. 12, pp. 123001, Dec. 2012. DOI: 10.1115/1.4007407.
  • M. Gupta, V. Singh, R. Kumar, and Z. Said, “A review on thermophysical properties of nanofluids and heat transfer applications,” Renew. Sustain. Energy Rev., vol. 74, pp. 638–670, Jul. 2017. DOI: 10.1016/j.rser.2017.02.073.
  • R. Kempers, D. Ewing, and C. Y. Ching, “Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes,” Appl. Therm. Eng., vol. 26, no. 5-6, pp. 589–595, Apr. 2006. DOI: 10.1016/j.applthermaleng.2005.07.004.
  • M. A. Nazari, R. Ghasempour, and M. H. Ahmadi, “A review on using nanofluids in heat pipes,” J. Therm. Anal. Calorim., vol. 137, no. 6, pp. 1847–1855, Mar. 2019. DOI: 10.1007/s10973-019-08094-y.
  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Argonne National Laboratory (ANL), Argonne, IL, USA, Rep. no. ANL/MSD/CP-84938; CONF-951135-29, 1995.
  • S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” J. Heat Transf., vol. 125, no. 4, pp. 567–574, Aug. 2003. DOI: 10.1115/1.1571080.
  • P. Keblinski, J. A. Eastman, and D. G. Cahill, “Nanofluids for thermal transport,” Mater. Today, vol. 8, no. 6, pp. 36–44, Jun. 2005. DOI: 10.1016/S1369-7021(05)70936-6.
  • T. Yousefi, E. Shojaeizadeh, F. Veysi, and S. Zinadini, “An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector,” Solar Energy, vol. 86, no. 2, pp. 771–779, Feb. 2012. DOI: 10.1016/j.solener.2011.12.003.
  • N. Zhao, S. Li, and J. Yang, “A review on nanofluids: data-driven modeling of thermalphysical properties and the application in automotive radiator,” Renew. Sustain. Energy Rev., vol. 66, pp. 596–616, Dec. 2016. DOI: 10.1016/j.rser.2016.08.029.
  • M. Ramezanizadeh, M. A. Nazari, M. H. Ahmadi, and E. Acıkkalp, “Application of nanofluids in thermosyphons: a review,” J. Mol. Liq., vol. 272, pp. 395–402, Dec. 2018. DOI: 10.1016/j.molliq.2018.09.101.
  • S. S. M. Ajarostaghi, M. Zaboli, and M. Nourbakhsh, “Numerical evaluation of turbulence heat transfer and fluid flow of hybrid nanofluids in a pipe with innovative vortex generator,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 1583–1597, 2021. DOI: 10.1007/s10973-020-10205-z.
  • Z. Liu and Q. Zhu, “Application of aqueous nanofluids on heat pipe thermal efficiency,” Int. Commun. Heat Mass Transf., vol. 35, pp. 1316–1319, 2008.
  • S. Rittidech and S. Sangiamsuk, “Internal flow patterns on heat transfer performance of a closed-loop oscillating heat pipe with check valves,” Exp. Heat Transf., vol. 25, no. 1, pp. 48–57, 2012. DOI: 10.1080/08916152.2011.559568.
  • H. M. Maghrabie et al., “Numerical simulation of heat pipes in different applications,” Int. J. Thermofluids, vol. 16, pp. 100199, Nov. 2022. DOI: 10.1016/j.ijft.2022.100199.
  • C. Li and J. Li, “Thermal characteristics of a flat plate pulsating heat pipe module for onsite cooling of high power server CPUs,” Therm. Sci. Eng. Progress, vol. 37, pp. 101542, Jan. 2023. DOI: 10.1016/j.tsep.2022.101542.
  • Y. Zhou et al., “Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid,” Powder Technol., vol. 384, pp. 414–422, May 2021. DOI: 10.1016/j.powtec.2021.02.021.
  • F. Shang, D. Liu, H. Xian, Y. Yang, and X. Du, “Flow and heat transfer characteristics of different forms of nanometer particles in oscillating heat pipe,” J. Chem. Ind. Eng. China, vol. 58, no. 9, pp. 2200–2204, 2007. DOI: EN/Y2007/V58/I9/2200.
  • H. Ghorabaee et al., “The use of nanofluids in thermosyphon heat pipe: a comprehensive review,” Powder Technol., vol. 394, pp. 250–269, Dec. 2021. DOI: 10.1016/j.powtec.2021.08.045.
  • S. Khandekar and M. Groll, “Pulsating heat pipes: attractive entrants in the family of closed passive two-phase systems,” J. Energy Heat Mass Transf., vol. 26, pp. 99–115, Mar.–Dec. 2004.
  • W. I. A. Aly, M. A. Elbalshouny, H. M. Abd El-Hameed, and M. Fatouh, “Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angle and filling ratio,” Appl. Therm. Eng., vol. 110, pp. 1294–1304, Jan. 2017. DOI: 10.1016/j.applthermaleng.2016.08.130.
  • M. I. Hassan, P. K. Singh, W. Tesfai, and Y. Shatilla, “An experimental study of heat pipe performance using nanofluids,” Int. J. Green Energy, vol. 12, no. 3, pp. 225–229, 2015. DOI: 10.1080/15435075.2014.891518.
  • B. S. Bhullar, D. Gangacharyulu, and S. K. Das, “Augmented thermal performance of straight heat pipe employing annular screen mesh wick and surfactant free stable aqueous nanofluids,” Heat Transf. Eng., vol. 38, no. 2, pp. 217–226, 2017. DOI: 10.1080/01457632.2016.1177418.
  • L. G. Asirvatham, R. Nimmagadda, and S. Wongwises, “Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid,” Int. J. Heat Mass Transf., vol. 60, pp. 201–209, May 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.11.037.
  • L. G. Asirvatham, R. Nimmagadda, and S. Wongwises, “Operational limitations of heat pipes with silver-water nanofluids,” J. Heat Transf., vol. 135, no. 11, pp. 111011, Nov. 2013. DOI: 10.1115/1.4024616.
  • M. Kole and T. K. Dey, “Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids,” Appl. Therm. Eng., vol. 50, no. 1, pp. 763–770, Jan. 2013. DOI: 10.1016/j.applthermaleng.2012.06.049.
  • Y. Zhou et al., “Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids,” Powder Technol., vol. 332, pp. 371–380, Jun. 2018. DOI: 10.1016/j.powtec.2018.02.048.
  • P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, and R. Kanna, “Heat transfer in a loop heat pipe using diamond-H2O nanofluid,” Heat Transf. Eng., vol. 39, no. 13-14, pp. 1117–1131, 2018. DOI: 10.1080/01457632.2017.1363616.
  • M. Zareei, H. Yoozbashizadeh, and H. R. M. Hosseini, “Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory,” J. Therm. Anal. Calorim., vol. 135, no. 2, pp. 1185–1196, 2019. DOI: 10.1007/s10973-018-7620-1.
  • S. S. M. Ajarostaghi, M. Shirzad, S. Rashidi, and L. K. B. Li, “Heat transfer performance of a nanofluid-filled tube with wall corrugations and center-cleared twisted-tape inserts,” Energy Sources Part A Recov. Util. Environ. Eff., pp. 1–21, Nov. 2020. DOI: 10.1080/15567036.2020.1841860.
  • Y. Wang, K. Deng, J. Wu, G. Su, and S. Qiu, “A mechanism of heat transfer enhancement or deterioration of nanofluid flow boiling,” Int. J. Heat Mass Transf., vol. 158, pp. 119985, Sep. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119985.
  • J. P. Holman, Experimental Methods for Engineers, 8th ed. New York, NY, USA: Mc Graw Hill, 2012.
  • B. S. Bhullar, D. Gangacharyulu1, and S. K. Das, “Temporal deterioration in thermal performance of screen mesh wick straight heat pipe using surfactant free aqueous nanofluids,” Heat Mass Transf., vol. 53, no. 1, pp. 241–251, Jan. 2017. DOI: 10.1007/s00231-016-1785-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.