79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of Fractal Fins towards Heat Transfer Properties in Thermal Storage System

, , &

References

  • K. Tofani and S. Tiari, “Nano-enhanced phase change materials in latent heat thermal energy storage systems: a review,” Energies, vol. 14, no. 13, pp. 3821, 2021. DOI: 10.3390/en14133821.
  • M. Arıcı, E. Tütüncü, Ç. Yıldızand and D. Li, “Enhancement of PCM melting rate via internal fin and nanoparticles,” Int. J. Heat Mass Transf., vol. 156, pp. 119845, Aug. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119845.
  • B. Buonomo, D. Ercole, O. Manca and S. Nardini, “Numerical analysis on a latent thermal energy storage system with phase change materials and aluminum foam,” Heat Transf. Eng., vol. 41, no. 12, pp. 1075–1084, 2020. DOI: 10.1080/01457632.2019.1600875.
  • A. M. Abdulateef, S. Mat, J. Abdulateef, K. Sopianand and A. A. Al-Abidi, “Thermal performance enhancement of triplex tube latent thermal storage using fins-nano-phase change material technique,” Heat Transf. Eng., vol. 39, no. 12, pp. 1067–1080, 2018. DOI: 10.1080/01457632.2017.1358488.
  • H. Bazai, M. M. Zerafat, M. J. Zarei and A. Behzadi, “Numerical modeling of the effect of nanoparticle concentration on solidification rate of phase change materials in thermal energy storage systems,” Heat Transf. Eng., vol. 44, no. 13, pp. 1121–1139, 2023. DOI: 10.1080/01457632.2022.2119922.
  • X. Xiao and P. Zhang, “Experimental investigation on heat storage/retrieval characteristics of a latent heat storage system,” Heat Transf. Eng., vol. 35, no. 11–12, pp. 1084–1097, 2014. DOI: 10.1080/01457632.2013.863127.
  • J. M. Mahdi, S. Lohrasbi, D. D. Ganji and E. C. Nsofor, “Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger,” Int. J. Heat Mass Transf., vol. 124, pp. 663–676, Sep. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.095.
  • F. Agyenim, P. Eames and M. Smyth, “A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins,” Sol. Energy, vol. 83, no. 9, pp. 1509–1520, Sep. 2009. DOI: 10.1016/j.solener.2009.04.007.
  • A. Sundaramahalingam and S. Jegadheeswaran, “Heat transfer enhancement of latent heat storage using novel quadruple helical fins,” Heat Transf. Eng., vol. 43, no. 22, pp. 1900–1917, 2022. DOI: 10.1080/01457632.2021.2022306.
  • B. Kamkari and H. Shokouhmand, “Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins,” Int. J. Heat Mass Transf., vol. 78, pp. 839–851, Nov. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.056.
  • M. Fayz-Al-Asad, M. Yavuz, M. N. Alam, M. M. A. Sarker and O. Bazighifan, “Influence of fin length on magneto-combined convection heat transfer performance in a lid-driven wavy cavity,” Fractal Fract., vol. 5, no. 3, pp. 107, 2021. DOI: 10.3390/fractalfract5030107.
  • F. T. Najim, et al., “Improved melting of latent heat storage using fin arrays with non-uniform dimensions and distinct patterns,” Nanomaterials, vol. 12, no. 3, pp. 403, 2022. DOI: 10.3390/nano12030403.
  • A. Al-Abidi, S. Mat, K. Sopian, Y. Sulaiman and A. Mohammad, “Heat transfer enhancement for PCM thermal energy storage in triplex tube heat exchanger,” Heat Transf. Eng, vol. 37, no. 7–8, pp. 705–712, 2016. DOI: 10.1080/01457632.2015.1067090.
  • A. A. Al-Abidi, S. Mat, K. Sopian, M. Y. Sulaiman and A. T. Mohammad, “Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins,” Int. J. Heat Mass Transf., vol. 61, pp. 684–695, 2013. Jun. DOI: 10.1016/j.ijheatmasstransfer.2013.02.030.
  • M. R. Hajmohammadi, “Optimal design of tree-shaped inverted fins,” Int. J. Heat Mass Transf., vol. 116, pp. 1352–1360, 2018. Jan. DOI: 10.1016/j.ijheatmasstransfer.2017.09.042.
  • X. Jia, X. Zhai and X. Cheng, “Thermal performance analysis and optimization of a spherical PCM capsule with pin-fins for cold storage,” Appl. Therm. Eng., vol. 148, pp. 929–938, Feb. 2019. DOI: 10.1016/j.applthermaleng.2018.11.105.
  • M. H. Joneidi, M. Rahimi, R. Pakrouh and R. Bahrampoury, “Experimental analysis of transient melting process in a horizontal cavity with different configurations of fins,” Renew. Energy, vol. 145, pp. 2451–2462, Jan. 2020. DOI: 10.1016/j.renene.2019.07.114.
  • J. Zheng, J. Wang, T. Chen and Y. Yu, “Solidification performance of heat exchanger with tree-shaped fins,” Renew. Energy, vol. 150, pp. 1098–1107, May 2020. DOI: 10.1016/j.renene.2019.10.091.
  • Ç. Yıldız, M. Arıcı, S. Nižetić and A. Shahsavar, “Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins,” Energy, vol. 207, pp. 118223, Sep. 2020. DOI: 10.1016/j.energy.2020.118223.
  • M. Miansari, A. Jafarzadeh, H. Arasteh and D. Toghraie, “Thermal performance of a helical shell and tube heat exchanger without fin, with circular fins, and with V-shaped circular fins applying on the coil,” J. Therm. Anal. Calorim., vol. 143, no. 6, pp. 4273–4285, Mar. 2021. DOI: 10.1007/s10973-020-09395-3.
  • J. Skaalum and D. Groulx, “Heat transfer comparison between branching and non-branching fins in a latent heat energy storage system,” Int. J. Therm. Sci., vol. 152, pp. 106331, Jun. 2020. DOI: 10.1016/j.ijthermalsci.2020.106331.
  • D. Groulx, P. H. Biwole and M. Bhouri, “Phase change heat transfer in a rectangular enclosure as a function of inclination and fin placement,” Int. J. Therm. Sci., vol. 151, pp. 106260, May 2020. DOI: 10.1016/j.ijthermalsci.2020.106260.
  • X.-S. Bai, et al., “Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: a numerical study,” Energy, vol. 220, pp. 119738, Apr. 2021. DOI: 10.1016/j.energy.2020.119738.
  • Z.-G. Shen, S. Chen and B. Chen, “Heat transfer performance of a finned shell-and-tube latent heat thermal energy storage unit in the presence of thermal radiation,” J. Energy Storage, vol. 45, pp. 103724, Jan. 2022. DOI: 10.1016/j.est.2021.103724.
  • X. Luo, et al., “Numerical study on enhanced melting heat transfer of PCM by the combined fractal fins,” J. Energy Storage, vol. 45, pp. 103780, Jan. 2022. DOI: 10.1016/j.est.2021.103780.
  • J. Wu, Y. Zhang, K. Sun and Q. Chen, “Heat transfer enhancement of phase change material in triple-tube latent heat thermal energy storage units: operating modes and fin configurations,” Energies, vol. 15, no. 15, pp. 5653, 2022. DOI: 10.3390/en15155653.
  • S. A. Zonouzi and A. Dadvar, “Numerical investigation of using helical fins for the enhancement of the charging process of a latent heat thermal energy storage system,” J. Energy Storage, vol. 49, pp. 104157, May 2022. DOI: 10.1016/j.est.2022.104157.
  • C. Yu, S. Wu, Y. Huang, F. Yao and X. Liu, “Charging performance optimization of a latent heat storage unit with fractal tree-like fins,” J. Energy Storage, vol. 30, pp. 101498, Aug. 2020. DOI: 10.1016/j.est.2020.101498.
  • D. Li and Z. Yu, “Natural convection melting in a cubic cavity with internal fins: a lattice Boltzmann study,” Case Stud. Therm. Eng., vol. 25, pp. 100919, Jun. 2021. DOI: 10.1016/j.csite.2021.100919.
  • A. D. Brent, V. R. Voller and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal,” Numer. Heat Transf., vol. 13, no. 3, pp. 297–318, 1988. DOI: 10.1080/10407788808913615.
  • S. Jafari, R. Yamamotoand and M. Rahnama, “Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 83, no. 2, Pt. 2, pp. 026702, Feb. 2011. DOI: 10.1103/PhysRevE.83.026702.
  • R. Huang, H. Wu and P. Cheng, “A new lattice Boltzmann model for solid–liquid phase change,” Int. J. Heat Mass Transf., vol. 59, pp. 295–301, Apr. 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.12.027.
  • Y. Wang, C. Shu, H. B. Huang and C. J. Teo, “Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio,” J. Comput. Phys., vol. 280, pp. 404–423, Jan. 2015. DOI: 10.1016/j.jcp.2014.09.035.
  • B. Yang, S. Chen, C. Cao, Z. Liu and C. Zheng, “Lattice Boltzmann simulation of two cold particles settling in Newtonian fluid with thermal convection,” Int. J. Heat Mass Transf., vol. 93, pp. 477–490, Feb. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.10.030.
  • A. Younsi and A. Cartalade, “On anisotropy function in crystal growth simulations using Lattice Boltzmann equation,” J. Comput. Phys., vol. 325, pp. 1–21, Nov. 2016. DOI: 10.1016/j.jcp.2016.08.014.
  • M. B. Asadi, A. De Rosis and S. Zendehboudi, “Central-moments-based lattice boltzmann for associating fluids: a new integrated approach,” J. Phys. Chem. B, vol. 124, no. 14, pp. 2900–2913, Feb. 2020. DOI: 10.1021/acs.jpcb.9b10989.
  • R. Khazaeli, S. Mortazavi and M. Ashrafizaadeh, “Application of a ghost fluid approach for a thermal lattice Boltzmann method,” J. Comput. Phys., vol. 250, pp. 126–140, Oct. 2013. DOI: 10.1016/j.jcp.2013.04.044.
  • Y. Huo and Z. Rao, “The improved enthalpy-transforming based lattice Boltzmann model for solid-liquid phase change,” Int. J. Heat Mass Transf., vol. 133, pp. 861–871, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.166.
  • S. K. Kang and Y. A. Hassan, “A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries,” Numer. Methods Fluids, vol. 66, no. 9, pp. 1132–1158, Jul. 2011. DOI: 10.1002/fld.2304.
  • J. Mencinger, “Numerical simulation of melting in two-dimensional cavity using adaptive grid,” J. Comput. Phys., vol. 198, no. 1, pp. 243–264, Jul. 2004. DOI: 10.1016/j.jcp.2004.01.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.