79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Utilizing Reversed Brayton Cycle for Enhanced Cooling Tower Technology

ORCID Icon, , , &

References

  • S.-Y. Pan, S. W. Snyder, A. I. Packman, Y. J. Lin and P.-C. Chiang, “Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus,” Water-Energy Nexus, vol. 1, no. 1, pp. 26–41, Jun. 2018. DOI: 10.1016/j.wen.2018.04.002.
  • A. Ayoub, B. Gjorgiev and G. Sansavini, “Cooling towers performance in a changing climate: techno-economic modeling and design optimization,” Energy, vol. 160, no. C, pp. 1133–1143, Oct. 2018. DOI: 10.1016/j.energy.2018.07.080.
  • J. Lee, “Evaluation of impacts of cooling tower design properties on the near-field environment,” Nucl. Eng. Des., vol. 326, pp. 65–78, Jan. 2018. DOI: 10.1016/j.nucengdes.2017.09.026.
  • C. Schulze, B. Raabe, C. Herrmann and S. Thiede, “Environmental impacts of cooling tower operations – The influence of regional conditions on energy and water demands,” Procedia CIRP, vol. 69, pp. 277–282, 2018. DOI: 10.1016/j.procir.2017.11.034.
  • Y. Chudnovsky, A. Kozlov and P. Glanville, “Program on Technology Innovation: Development of an Advanced Dew Point Cooling Fill Concept for Power Plants,” EPRI, Palo Alto, CA, USA, Rep. 3002008044, 2016.
  • L. Zhang, S. Spatari and Y. Sun, “Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials,” Appl. Energy, vol. 271, pp. 115227, Aug. 2020. DOI: 10.1016/j.apenergy.2020.115227.
  • B. Xu, et al., “System-level analysis of a novel air-cooled condenser using spray freezing of phase change materials,” Appl. Therm. Eng., vol. 131, pp. 102–114, Feb. 2018. DOI: 10.1016/j.applthermaleng.2017.11.145.
  • S.-A. Zhao, M.-R. Wang, L.-J. Li and C.-Q. Du, “Effect of cross wind on performances of natural draft counterflow cooling tower outlet,” Heat Transf. Eng., vol. 38, no. 11-12, pp. 1108–1116, 2017. DOI: 10.1080/01457632.2016.1217055.
  • M. M. H. Kashani and K. V. Dobrego, “Effect of inlet window deflectors on the performance of a natural-draft cooling tower subjected to crosswinds,” Heat Transf. Eng., vol. 37, no. 15, pp. 1293–1301, 2016. DOI: 10.1080/01457632.2015.1119618.
  • X. Chen, F. Sun, Y. Chen and M. Gao, “Novel method for improving the cooling performance of natural draft wet cooling towers,” Appl. Therm. Eng., vol. 147, pp. 562–570, Jan. 2019. DOI: 10.1016/j.applthermaleng.2018.10.076.
  • X. Chen, F. Sun, Y. Chen and M. Gao, “New retrofit method to improve the thermal performance of natural draft wet cooling towers based on the reconstruction of the aerodynamic field,” Int. J. Heat Mass Transf., vol. 132, pp. 671–680, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.047.
  • D. Kang and R. K. Strand, “Significance of parameters affecting the performance of a passive down-draft evaporative cooling (PDEC) tower with a spray system,” Appl. Energy, vol. 178, pp. 269–280, Sep. 2016. DOI: 10.1016/j.apenergy.2016.06.055.
  • D. Roux and H. C. R. Reuter, “Performance Evaluation and Design of a New Cooling Tower Spray System for Uniform Water Distribution,” Heat Transf. Eng., vol. 38, no. 11-12, pp. 1044–1053, 2017. DOI: 10.1080/01457632.2016.1216986.
  • H. Ma, F. Si, K. Zhu and J. Wang, “Quantitative research of spray cooling effects on thermo-flow performance of the large-scale dry cooling tower with an integrated numerical model,” Int. J. Heat Mass Transf., vol. 141, pp. 799–817, Oct. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.06.085.
  • M. Rahmati, S. R. Alavi and M. R. Tavakoli, “Experimental investigation on performance enhancement of forced draft wet cooling towers with special emphasis on the role of stage numbers,” Energy Convers. Manag., vol. 126, pp. 971–981, Oct. 2016. DOI: 10.1016/j.enconman.2016.08.059.
  • W. Deng, F. Sun, K. Chen and X. Zhang, “New method to decrease the air recirculation of mechanical draft wet cooling tower group by increasing height of fan duct,” Appl. Therm. Eng., vol. 219, no. Part C, pp. 119645, Jan. 2023. DOI: 10.1016/j.applthermaleng.2022.119645.
  • X. Chen, F. Sun, S. Yang, L. Xia and X. Zhang, “Effect mechanism of wind shields on the thermal performance for mechanical draft wet cooling towers,” Appl. Therm. Eng., vol. 219, no. Part A, pp. 119452, Jan. 2023. DOI: 10.1016/j.applthermaleng.2022.119452.
  • W. Deng, F. Sun, K. Chen and X. Zhang, “The study on plume abatement and water saving of hybrid mechanical draft wet cooling tower,” Appl. Therm. Eng, vol. 223, pp. 120013, Mar. 2023. DOI: 10.1016/j.applthermaleng.2023.120013.
  • D. Pandelidis, M. Drąg, P. Drąg, W. Worek and S. Cetin, “Comparative analysis between traditional and M-Cycle based cooling tower,” Int. J. Heat Mass Transf., vol. 159, pp. 120124, Oct. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120124.
  • Y. Zhou, X. Zhu and X. Ding, “Theoretical investigation on thermal performance of new structure closed wet cooling tower,” Heat Transf. Eng., vol. 39, no. 5, pp. 460–472, 2018. DOI: 10.1080/01457632.2017.1312899.
  • S.-A. Zhao, X.-J. Song, F.-M. Guo, J. Feng and D.-W. Zhang, “Numerical study on the performance of a natural draft cooling tower with water-cooled collectors,” Heat Transf. Eng., vol. 38, no. 11-12, pp. 1054–1062, 2017. DOI: 10.1080/01457632.2016.1216998.
  • ARI Standard 550/590, Performance Rating of Water Chilling Packages Using the Vapor Compression Cycle. Air-Conditioning, Heating and Refrigeration Institute, Arlington, VA, 2011.
  • J. Wenger, “Enhanced Cooling Tower for Colder Water, Energy Savings and Reduced Evaporation,” Proceedings of the 2010 Cooling Technology Institute Annual Conference, Houston, Texas, Feb. 7-11, 2010.
  • S. Anisimov, et al., “Advanced Cooling Tower Concept for Commercial and Industrial Applications,” Proccedings of the ASME 2014 Power Conference (POWER2014), Baltimore, Maryland, USA, Ju. 28-31, 2014. DOI: 10.1115/POWER2014-32020.
  • M. H. Mahmood, M. Sultan, T. Miyazaki, S. Koyama and V. S. Maisotsenko, “Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling,” Renew. Sustain. Energy Rev, vol. 66, pp. 537–555, Dec. 2016. DOI: 10.1016/j.rser.2016.08.022.
  • L. Gillan, P. Glanville and A. Kozlov, “Maisotsenko-cycle enhanced cooling towers,” Proceedings of the 2011 Cooling Technology Institute Annual Conference, San Antonio, Texas, Feb. 6-10, 2011.
  • S. Anisimov, D. Pandelidis and V. Maisotsenko, “Numerical study of heat and mass transfer process in the maisotsenko cycle for indirect evaporative air cooling,” Heat Transf. Eng., vol. 37, no. 17, pp. 1455–1465, 2016. DOI: 10.1080/01457632.2016.1142314.
  • Johnson Controls., “Hybrid cooling systems: bluestream thermosyphon technology” Available: https://www.johnsoncontrols.com/hybrid-cooling-systems. Accessed: Jul. 17, 2023.
  • W. Zhong, et al., “Falling-film thermosyphons: application to water harvesting from humid gas streams,” Int. J. Heat Mass Transf., vol. 164, pp. 120486, Jan. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120486.
  • Y. Sun, Z. Guan and K. Hooman, “A review on the performance evaluation of natural draft dry cooling towers and possible improvements via inlet air spray cooling,” Renew. Sustain. Energy Rev., vol. 79, pp. 618–637, Nov. 2017. DOI: 10.1016/j.rser.2017.05.151.
  • H. Ahmadikia, M. Soleimani and E. Gholami, “Simultaneous effects of water spray and crosswind on performance of natural draft dry cooling tower,” Therm. Sci., vol. 17, no. 2, pp. 443–455, 2013. DOI: 10.2298/TSCI110510134A.
  • S. He, et al., “Investigation on the control mechanism of spray pre-cooling the inlet air of natural draft dry cooling tower,” Appl. Therm. Eng., vol. 217, pp. 119186, Nov. 2022. DOI: 10.1016/j.applthermaleng.2022.119186.
  • L. Zhao, et al., “Multi-objective optimization analysis of structural design for large cooling towers,” Heat Transf. Eng., vol. 38, no. 11-12, pp. 1135–1145, 2017. DOI: 10.1080/01457632.2016.1217064.
  • P. Regucki, M. Lewkowicz and R. Krzyżyńska, “Optimization of thermal-flow processes in a system of conjugate cooling towers,” Heat Transf. Eng., vol. 41, no. 22, pp. 1938–1948, 2020. DOI: 10.1080/01457632.2019.1675251.
  • J. D. Bagley, “The behavior of adaptive systems which employ genetic and correlation algorithms,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI, USA, 1967.
  • A. Rezaie, G. Tsatsaronis and U. Hellwig, “Thermal design and optimization of a heat recovery steam generator in a combined-cycle power plant by applying a genetic algorithm,” Energy, vol. 168, pp. 346–357, Feb. 2019. DOI: 10.1016/j.energy.2018.11.047.
  • M. Bahador, M. M. Keshtkar and A. Zariee, “Numerical and experimental investigation on the breast cancer tumour parameters by inverse heat transfer method using genetic algorithm and image processing,” Sadhana - Acad. Proc. Eng. Sci., vol. 43, no. 9, pp. 1–10, 2018. DOI: 10.1007/s12046-018-0900-4.
  • R. Talib, N. Nabil and W. Choi, “Optimization-based data-enabled modeling technique for HVAC systems components,” Buildings, vol. 10, no. 9, pp. 163, Sep. 2020. DOI: 10.3390/buildings10090163.
  • A. Karmakar, et al., “Optimization and analysis of a heat exchanger with encapsulated phase change material,” J. Thermophys. Heat Transf., vol. 33, no. 4, pp. 1161–1175, Oct2019. DOI: 10.2514/1.T5720.
  • Y. Kanani, A. Karmakar and S. Acharya, “Phase-Change Process Inside a Small-Radii Cylinder Subjected to Cyclic Convective Boundary Conditions: A Numerical Study,” J. Heat Transfer, vol. 143, no. 10, pp. 102401, Oct. 2021. DOI: 10.1115/1.4052085.
  • A. Kozlov and Y. Chudnovsky, “Cooling System,” U.S. Patent 11,585,576 B2, February 1, 2023.
  • Gas Processors Suppliers Association (GPSA), GPSA Engineering Data Book, 14th ed. Tulsa, OK, USA: Gas Processors Suppliers Association, 2004.
  • H. Jaber and R. L. Webb, “Design of Cooling Towers by the Effectiveness-NTU Method,” J. Heat Transfer, vol. 111, no. 4, pp. 837–843, Nov. 1989. DOI: 10.1115/1.3250794.
  • S. Acharya, B. C. Salomon, A. Kozlov and Y. Chudnovsky, “Thermal Investigation of a Chiller - Cooling Tower Configuration with Precooling Provided by a Brayton-Cycle-Based-System,” Proceeding of 8th Thermal and Fluids Engineering Conference (TFEC), College Park, MD, USA, Mar. 26-29, 2023, pp. 905–922, DOI: 10.1615/TFEC2023.esy.045879.
  • M. Poppe and H. Rögener, “Calculation of cooling tower,” VDI-Heat Atlas (German), vol. 37, pp. 1–15, 1991.
  • P. Navarro, J. Ruiz, M. Hernández, A. S. Kaiser and M. Lucas, “Critical evaluation of the thermal performance analysis of a new cooling tower prototype,” Appl. Therm. Eng., vol. 213, pp. 118719, Aug. 2022. DOI: 10.1016/j.applthermaleng.2022.118719.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.