8
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Correction for Nusselt Number Correlations of Transcritical Methane Based on Radial Velocity Distribution

, , , &

References

  • J. W. Song and B. Sun, “Coupled numerical simulation of combustion and regenerative cooling in LOX/methane rocket engines,” Appl. Therm. Eng., vol. 106, pp. 762–773, Aug. 2016. DOI: 10.1016/j.applthermaleng.2016.05.130.
  • M. Shim, K. Noh and W. Yoon, “Flame structure of methane/oxygen shear coaxial jet with velocity ratio using high-speed imaging and OH*, CH* chemiluminescence,” Acta Astronaut., vol. 147, pp. 127–132, Jun. 2018. DOI: 10.1016/j.actaastro.2018.03.053.
  • M. Zhang and B. Sun, “Mechanism and influence factor analysis of heat transfer deterioration of transcritical methane,” Int. J. Energy Res., vol. 44, no. 11, pp. 9050–9063, Sep. 2020. DOI: 10.1002/er.5614.
  • M. Zhang and B. Sun, “Effect of artificial roughness on flow and heat transfer of transcritical methane,” Int. J. Therm. Sci., vol. 158, pp. 106528, Dec. 2020. DOI: 10.1016/j.ijthermalsci.2020.106528.
  • D. Ricci, P. Natale and F. Battista, “Experimental and numerical investigation on the behavior of methane in supercritical conditions,” Appl. Therm. Eng., vol. 107, pp. 1334–1353, Aug. 2016. DOI: 10.1016/j.applthermaleng.2016.07.052.
  • L. Wang, Z. Chen and H. Meng, “Numerical study of conjugate heat transfer of cryogenic methane in rectangular engine cooling channels at supercritical pressures,” Appl. Therm. Eng., vol. 54, no. 1, pp. 237–246, May 2013. DOI: 10.1016/j.applthermaleng.2013.02.007.
  • F. W. Dittus and L. M. K. Boelter, “Heat transfer in automobile radiators of the tubular type,” Int. Commun. Heat Mass Transfer, vol. 12, no. 1, pp. 3–22, Jan–Feb 1985. DOI: 10.1016/0735-1933(85)90003-X.
  • A. Kaya, M. Lazova, G. Kosmadakis, S. Lecompte and M. De Paepe, “Evaluation of existing heat transfer correlations in designing helical coil evaporators for low-temperature organic Rankine cycles via inverse design approach,” Heat Transfer Eng., vol. 40, no. 13-14, pp. 1137–1152, 2019. DOI: 10.1080/01457632.2018.1457250.
  • D. Kim, A. J. Ghajar, R. L. Dougherty and V. K. Ryali, “Comparison of 20 two-phase heat transfer correlations with seven sets of experimental data, including flow pattern and tube inclination effects,” Heat Transfer Eng., vol. 20, no. 1, pp. 15–40, 1999. DOI: 10.1080/014576399271691.
  • A. A. Bishop, R. O. Sandberg and L. S. Tong, “Forced-convection heat transfer to water at near-critical temperatures and supercritical pressures,” Report WCAP-2056, Westinghouse Electric Corporation, Atomic Power Division, Pittsburgh, PA, USA, 1964, pp. 85.
  • M. F. Taylor, Correlation of local heat-transfer coefficients for single-phase turbulent flow of hydrogen in tubes with temperature ratios to 23,” NASA Lewis Research Center, Cleveland, OH, USA, Rep. pp. 1968–4332. 1968.
  • M. Pizzarelli, “A CFD-derived correlation for methane heat transfer deterioration,” Numer. Heat Transfer, Part A, vol. 69, no. 3, pp. 242–264, 2016. DOI: 10.1080/10407782.2015.1080575.
  • M. Shokri and A. Ebrahimi, “Improvement of heat-transfer correlations for supercritical methane coolant in rectangular channel,” Appl. Therm. Eng., vol. 147, pp. 216–230, Jan. 2019. DOI: 10.1016/j.applthermaleng.2018.10.042.
  • M. Zhang and B. Sun, “Improved heat-transfer correlation for transcritical methane based on a velocity profile correction term,” J. Therm. Sci. Eng. Appl., vol. 14, no. 4, pp. 041002, 2022. Apr. 2020. DOI: 10.1115/1.4051509.
  • K. Yongsiri, P. Eiamsa-Ard, K. Wongcharee and S. Eiamsa-Ard, “Augmented heat transfer in a turbulent channel flow with inclined detached-ribs,” Case Stud. Therm. Eng., vol. 3, pp. 1–10, Jul. 2014. DOI: 10.1016/j.csite.2013.12.003.
  • M. Bouhalleb and H. Abbassi, “Numerical investigation of heat transfer by CuO-water nanofluid in rectangular enclosures,” Heat Transfer Eng., vol. 37, no. 1, pp. 13–23, 2016. DOI: 10.1080/01457632.2015.1025003.
  • M. Pizzarelli, F. Nasuti and M. Onofri, “CFD analysis of transcritical methane in rocket engine cooling channels,” J. Supercrit. Fluid., vol. 62, pp. 79–87, Feb. 2012. DOI: 10.1016/j.supflu.2011.10.014.
  • A. C. Benim, M. Cagan and D. Gunes, “Computational analysis of transient heat transfer in turbulent pipe flow,” Int. J. Therm. Sci., vol. 43, no. 8, pp. 725–732, Aug. 2004. DOI: 10.1016/j.ijthermalsci.2004.02.012.
  • M. Pizzarelli, F. Nasuti, R. Votta and F. Battista, “Validation of conjugate heat transfer model for rocket cooling with supercritical methane,” J. Propul. Power, vol. 32, no. 3, pp. 726–733, May 2016. DOI: 10.2514/1.B35945.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.