16
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of Thermal Performance of Optimized Tree-Shaped Fins in Latent Heat Storage Units

, , , & ORCID Icon

References

  • M. Azzam, M. O. Hamdan, M. Alkhader and F. M. Gerner, “Analysis of plate-fin heat sink infused with phase change materials for intermittent space missions,” J. Enh. Heat Transf., vol. 30, no. 3, pp. 75–93, 2023. DOI: 10.1615/JEnhHeatTransf.2023045767.
  • Y. Zhang and Q. Wang, “ Impact of phase change material’s thermal properties on the thermal performance of phase change material hollow block wall,” Heat Transf. Eng., vol. 40, no. 19, pp. 1619–1632, 2019. DOI: 10.1080/01457632.2018.1480879.
  • Q. Luo, et al., “Waste polyvinyl chloride derived latent thermal energy storage composites for waste heat recovery via packed bed system,” J. Clean. Prod., vol. 415, pp. 137841, Aug. 2023. DOI: 10.1016/j.jclepro.2023.137841.
  • M. Ismail, W. K. Zahra and H. Hassan, “Numerical investigation of the air conditioning system performance assisted with energy storage of capsulated concave/convex phase change material,” J. Energy Storage, vol. 68, pp. 107651, Sep. 2023. DOI: 10.1016/j.est.2023.107651.
  • R. Jiang, M.-J. Li, W.-Q. Wang and M.-J. Li, “Model development and performance improvement of a photovoltaic-thermoelectric system by integrating and optimizing phase change materials,” Heat Trans. Res., vol. 54, no. 6, pp. 59–95, 2023. DOI: 10.1615/HeatTransRes.2022044532.
  • A. Sharma, et al., “Numerical study of tube diameter effects on solidification of PCM in a compact heat exchanger,” J. Enh. Heat Transf., vol. 29, no. 3, pp. 33–49, 2022. DOI: 10.1615/JEnhHeatTransf.2022040453.
  • J. Hu, R. Hu, Y. Zhu and X. Luo, “Experimental investigation on composite phase-change material (CPCM)-based substrate,” Heat Trans. Eng., vol. 37, no. 3–4, pp. 351–358, 2016. DOI: 10.1080/01457632.2015.1052712.
  • M. Kazemi, M. J. Hosseini, A. A. Ranjbar and R. Bahrampoury, “Improvement of longitudinal fins configuration in latent heat storage systems,” Renew. Energy, vol. 116, pp. 447–457, 2018. part A. Feb DOI: 10.1016/j.renene.2017.10.006.
  • S. D. Farahani, A. D. Farahani and P. Oraki, “Improving thermal performance of solar water heater using phase change material and porous material,” Heat Trans. Res., vol. 52, no. 16, pp. 69–86, 2021. DOI: 10.1615/HeatTransRes.2021039550.
  • Z. Wang, et al., “Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe,” Energy, vol. 275, pp. 127464, Jul. 2023. DOI: 10.1016/j.energy.2023.127464.
  • P. Adebayo and A. Yehya, “The effect of combining magnetic field and high-conductivity nanoparticles on the fusion rate of a phase change material,” Energy Convers. And Man: x, vol. 16, pp. 100314, Dec. 2022. DOI: 10.1016/j.ecmx.2022.100314.
  • Q. Ren, “Enhancement of nanoparticle-phase change material melting performance using a sinusoidal heat pipe,” Energy Convers. Manag., vol. 180, pp. 784–795, 2019. Jan DOI: 10.1016/j.enconman.2018.11.033.
  • H. Bazai, M. M. Zerafat, M. J. Zarei and A. Behzadi, “Numerical modeling of the effect of nanoparticle concentration on solidification rate of phase change materials in thermal energy storage systems,” Heat Trans. Eng., vol. 44, no. 13, pp. 1121–1139, 2023. DOI: 10.1080/01457632.2022.2119922.
  • B. Buonomo, D. Ercole, O. Manca and S. Nardini, “Numerical analysis on a latent thermal energy storage system with phase change materials and aluminum foam,” Heat Trans. Eng., vol. 41, no. 12, pp. 1075–1084, 2020. DOI: 10.1080/01457632.2019.1600875.
  • Y. Shen, A. R. Mazhar, P. Zhang and S. Liu, “Structure optimization of tree-shaped fins for improving the thermodynamic performance in latent heat storage,” Int. J. Therm. Sci., vol. 184, pp. 108003, Feb 2023. DOI: 10.1016/j.ijthermalsci.2022.108003.
  • P. Yan, et al., “Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems,” Appl. Ener., vol. 346, pp. 121352, Sep. 2023. DOI: 10.1016/j.apenergy.2023.121352.
  • M. Hariss, A. Gounni and M. El Alami, “Impact of innovative fin design on phase change material melting for thermal energy storage system,” Appl. Therm. Eng., vol. 231, pp. 120914, Aug. 2023. DOI: 10.1016/j.applthermaleng.2023.120914.
  • N. B. Khedher, et al., “Study of tree-shaped optimized fins in a heat sink filled by solid-solid nanocomposite phase change material,” Int. J. Therm. Sci., vol. 136, pp. 106195, Jul. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106195.
  • F. Ren, J. Du, P. Peng, M. Song and X. Ma, “Analysis of melting and solidification performance of bionic snowflake fin horizontal Triplex-tube latent heat storage system based on response surface method,” J. Energy Storage, vol. 70, pp. 108067, Oct. 2023. DOI: 10.1016/j.est.2023.108067.
  • F. Ren, J. Du and Y. Cai, “Solidification performance analysis of bionic spider web vertical latent heat system based on response surface method optimization,” J. Energy Storage, vol. 55, pp. 105519, Nov. 2022. DOI: 10.1016/j.est.2022.105519.
  • U. N. Temel and F. Kilinc, “Experimental investigation of variable fin length on melting performance in a rectangular enclosure containing phase change material,” Int. Commun. Heat Mass Transf, vol. 142, pp. 106658, Mar. 2023. DOI: 10.1016/j.icheatmasstransfer.2023.106658.
  • C. Li, et al., “Melting process of RT-25 as a phase change material by placing innovative rectangular and parallelogram fins: effect of shape and angle of fins,” J. Energy Storage, vol. 65, pp. 107375, Aug. 2023. DOI: 10.1016/j.est.2023.107375.
  • İG. Demirkıran, L. A. O. Rocha and E. Cetkin, “Emergence of asymmetric straight and branched fins in horizontally oriented latent heat thermal energy storage units,” Int. J. Heat Mass Transfer, vol. 189, pp. 122726, Jun. 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122726.
  • T. Bouhal, et al., “Parametric CFD analysis and impact of PCM intrinsic parameters on melting process inside enclosure integrating fins: solar building applications,” J. Build. Eng., vol. 20, pp. 634–646, Nov. 2018. DOI: 10.1016/j.jobe.2018.09.016.
  • S. Tiari, S. Qiu and M. Mahdavi, “Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material,” Energy Convers. Manag., vol. 89, pp. 833–842, Jan. 2015. DOI: 10.1016/j.enconman.2014.10.053.
  • R. A. Nicholls, M. A. Moghimi and A. L. Griffiths, “Impact of fin type and orientation on performance of phase change material-based double pipe thermal energy storage,” J. Energy Storage, vol. 50, pp. 104671, Jun. 2022. DOI: 10.1016/j.est.2022.104671.
  • A. Jaberi Khosroshahi and S. Hossainpour, “A numerical investigation on the finned storage rotation effect on the phase change material melting process of latent heat thermal energy storage system,” J. Energy Storage, vol. 55, pp. 105461, Nov. 2022. DOI: 10.1016/j.est.2022.105461.
  • F. Zhang, et al., “A novel hybrid battery thermal management system with fins added on and between liquid cooling channels in composite phase change materials,” Appl. Therm. Eng., vol. 207, pp. 118198, May 2022. DOI: 10.1016/j.applthermaleng.2022.118198.
  • M. E. Nakhchi, M. Hatami and M. Rahmati, “A numerical study on the effects of nanoparticles and stair fins on performance improvement of phase change thermal energy storages,” Energy, vol. 215, pp. 119112, Jan. 2021. DOI: 10.1016/j.energy.2020.119112.
  • M. Alizadeh, K. Hosseinzadeh, M. H. Shahavi and D. D. Ganji, “Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material,” Appl. Therm. Eng., vol. 163, pp. 114436, Dec. 2019. DOI: 10.1016/j.applthermaleng.2019.114436.
  • C. Ji, et al., “Non-uniform heat transfer suppression to enhance PCM melting by angled fins,” Appl. Therm. Eng, vol. 129, pp. 269–279, Jan. 2018. DOI: 10.1016/j.applthermaleng.2017.10.030.
  • M. Barthwal and D. Rakshit, “No fins attached? Numerical analysis of internal–external fins coupled PCM melting for solar applications,” Appl. Therm. Eng, vol. 215, pp. 118911, Oct. 2022. DOI: 10.1016/j.applthermaleng.2022.118911.
  • Ç. Yıldız, M. Arıcı, S. Nižetić and A. Shahsavar, “Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins,” Energy, vol. 207, pp. 118223, Sep. 2020. DOI: 10.1016/j.energy.2020.118223.
  • Z.-J. Zheng, et al., “Melting and solidification performance enhancement of phase change material in a square cavity by utilizing temperature-driven deformable fin,” Appl. Therm. Eng., vol. 226, pp. 120313, May 2023. DOI: 10.1016/j.applthermaleng.2023.120313.
  • Z. Elmaazouzi, et al., “Coupled parameters evaluation of three different finned structures for concentrated solar thermal energy storage,” J. Energy Storage, vol. 51, pp. 104523, Jul. 2022. DOI: 10.1016/j.est.2022.104523.
  • S. H. Kim, S. Pandey, S. H. Park and M. Y. Ha, “A numerical investigation of the effect of fin inclination angle on the thermal energy storage performance of a phase change material in a rectangular latent heat thermal energy storage unit,” J. Energy Storage, vol. 47, pp. 103957, Mar. 2022. DOI: 10.1016/j.est.2022.103957.
  • J. Duan, Y. Xiong, and D. Yang, "Melting behavior of phase change material in honeycomb structures with different geometrical cores," Energies., vol. 12, no. 15, pp. 2920, Jul. 2019. DOI: 10.3390/en12152920.
  • G. Liu, et al., “Experimental and numerical studies on melting/solidification of PCM in a horizontal tank filled with graded metal foam,” Sol. Energy Mater. Sol. Cells, vol. 250, pp. 112092, Jan. 2023. DOI: 10.1016/j.solmat.2022.112092.
  • V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” Int. J. Heat Mass Transf., vol. 30, no. 8, pp. 1709–1719, Aug. 1987. DOI: 10.1016/0017-9310(87)90317-6.
  • J. Jiang, Y. Hong, Q. Li and J. Du, “Numerical analysis on heat transfer and melting characteristics of a solid-liquid phase change process in a rectangular cavity inserted with bifurcated fractal fins,” Int. Commun. Heat Mass, vol. 142, pp. 106616, Mar. 2023. DOI: 10.1016/j.icheatmasstransfer.2023.106616.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.