0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing Natural Convection Heat Transfer Through Dome-Shaped Nanofluid Enclosures: Two-Phase Simulation Analysis

, , , & ORCID Icon

References

  • M. I. Alamayreh and A. Alahmer, “Design a solar harvester system capturing light and thermal energy coupled with a novel direct thermal energy storage and nanoparticles,” Int. J. Thermofluids, vol. 18, pp. 100328, May 2023. DOI: 10.1016/j.ijft.2023.100328.
  • A. Sartipi, A. Laouadi, D. Naylor and R. Dhib, “Convective heat transfer in domed skylight cavities,” J. Build. Perform. Simul., vol. 3, no. 4, pp. 269–287, Dec. 2010. DOI: 10.1080/19401491003653611.
  • K. V. Wong and O. De Leon, “Applications of Nanofluids: current and Future,” Adv. Mech. Eng., vol. 2, pp. 519659, Jan. 2010. DOI: 10.1155/2010/519659.
  • A. Alahmer and S. Ajib, “Solar cooling technologies: state of art and perspectives,” Energy Convers. Manag., vol. 214, pp. 112896, Jun. 2020. DOI: 10.1016/j.enconman.2020.112896.
  • F. Ahmed et al., “Computational assessment of thermo-hydraulic performance of Al2O3-water nanofluid in hexagonal rod-bundles subchannel,” Prog. Nucl. Energy, vol. 135, pp. 103700, May 2021. DOI: 10.1016/j.pnucene.2021.103700.
  • M. Rafiq, M. Shafique, A. Azam and M. Ateeq, “Transformer oil-based nanofluid: the application of nanomaterials on thermal, electrical and physicochemical properties of liquid insulation-A review,” Ain Shams Eng. J., vol. 12, no. 1, pp. 555–576, Mar. 2021. DOI: 10.1016/j.asej.2020.08.010.
  • A. Alahmer and R. M. Ghoniem, “Improving automotive air conditioning system performance using composite nano-lubricants and fuzzy modeling optimization,” Sustainability, vol. 15, no. 12, pp. 9481, Jun. 2023. DOI: 10.3390/su15129481.
  • K. Arole et al., “Effects of Ti3C2Tz MXene nanoparticle additive on fluidic properties and tribological performance,” J. Mol. Liq., vol. 386, pp. 122435, Sep. 2023. DOI: 10.1016/j.molliq.2023.122435.
  • T. J. Choi, S. H. Kim, S. P. Jang, D. J. Yang and Y. M. Byeon, “Heat transfer enhancement of a radiator with mass-producing nanofluids (EG/water-based Al2O3 nanofluids) for cooling a 100 kw high power system,” Appl. Therm. Eng., vol. 180, pp. 115780, Nov. 2020. DOI: 10.1016/j.applthermaleng.2020.115780.
  • D. A. Alromi, S. Y. Madani and A. Seifalian, “Emerging application of magnetic nanoparticles for diagnosis and treatment of cancer,” Polymers (Basel), vol. 13, no. 23, pp. 4146, Nov. 2021. DOI: 10.3390/polym13234146.
  • M. Sheikholeslami, H. R. Ashorynejad and P. Rana, “Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation,” J. Mol. Liq., vol. 214, pp. 86–95, Feb. 2016. DOI: 10.1016/j.molliq.2015.11.052.
  • J. Burggraf, P. Farber, K. R. Karpaiya and P. Ueberholz, “Numerical investigation of laminar flow heat transfer of TiO2-water nanofluid in a heated pipe,” Heat Transf. Eng., vol. 42, no. 19–20, pp. 1635–1647, Nov. 2021. DOI: 10.1080/01457632.2020.1818379.
  • R. Mashayekhi et al., “Heat transfer enhancement of nanofluid flow in a tube equipped with rotating twisted tape inserts: a two-phase approach,” Heat Transf. Eng., vol. 43, no. 7, pp. 608–622, Feb. 2022. DOI: 10.1080/01457632.2021.1896835.
  • A. A. Varzaneh, D. Toghraie and A. Karimipour, “Comprehensive simulation of nanofluid flow and heat transfer in straight ribbed microtube using single-phase and two-phase models for choosing the best conditions,” J. Therm. Anal. Calorim., vol. 139, no. 1, pp. 701–720, May 2020. DOI: 10.1007/s10973-019-08381-8.
  • A. Mostafazadeh, D. Toghraie, R. Mashayekhi and O. A. Akbari, “Effect of radiation on laminar natural convection of nanofluid in a vertical channel with single-and two-phase approaches,” J. Therm. Anal. Calorim., vol. 138, no. 1, pp. 779–794, Apr. 2019. DOI: 10.1007/s10973-019-08236-2.
  • N. Etesami, S. Tavakoli and M. R. Pishvaie, “Theoretical comparative assessment of single-and two-phase models for natural convection heat transfer of Fe3O4/ethylene glycol nanofluid in the presence of electric field,” J. Therm. Anal. Calorim., vol. 146, no. 2, pp. 981–992, Jul. 2021. DOI: 10.1007/s10973-020-10059-5.
  • D. Wen and Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” Int. J. Heat Mass Transf., vol. 47, no. 24, pp. 5181–5188, Nov. 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.07.012.
  • M. Vahedi, Y. Mollaei Barzi and M. Firouzi, “Two-phase simulation of nanofluid flow in a heat exchanger with grooved wall,” J. Therm. Anal. Calorim., vol. 146, no. 3, pp. 1297–1321, Aug. 2021. DOI: 10.1007/s10973-020-10066-6.
  • M. Siavashi, K. Karimi, Q. Xiong and M. H. Doranehgard, “Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder,” J. Therm. Anal. Calorim., vol. 137, no. 1, pp. 267–287, Nov. 2019. DOI: 10.1007/s10973-018-7945-9.
  • B. M. Al-Srayyih et al., “Simulation investigation of the oscillatory motion of two elliptic obstacles located within a quarter-circle cavity filled with Cu-Al2O3/water hybrid nanofluid,” Numer. Heat Transf. A Appl., pp. 1–25, Nov. 2023. DOI: 10.1080/10407782.2023.2279248.
  • M. Thangavelu, N. Nagarajan and R.-J. Yang, “Magnetohydrodynamic effect on thermal transport by silver nanofluid flow in enclosure with central and lower heat sources,” Heat Transf. Eng., vol. 43, no. 20, pp. 1755–1768, Sep. 2022. DOI: 10.1080/01457632.2021.2009226.
  • M. Sharifpur, S. O. Giwa, K.-Y. Lee, H. Ghodsinezhad and J. P. Meyer, “Experimental investigation into natural convection of zinc oxide/water nanofluids in a square cavity,” Heat Transf. Eng., vol. 42, no. 19–20, pp. 1675–1687, Nov. 2021. DOI: 10.1080/01457632.2020.1818384.
  • I. V. Miroshnichenko, M. A. Sheremet, H. F. Oztop and K. Al-Salem, “MHD natural convection in a partially open trapezoidal cavity filled with a nanofluid,” Int. J. Mech. Sci., vol. 119, pp. 294–302, Dec. 2016. DOI: 10.1016/j.ijmecsci.2016.11.001.
  • K. M. Gangawane, R. P. Bharti and S. Kumar, “Effects of heating location and size on natural convection in partially heated open-ended enclosure by using lattice Boltzmann method,” Heat Transf. Eng., vol. 37, no. 6, pp. 507–522, Apr. 2016. DOI: 10.1080/01457632.2015.1060748.
  • R. H. Hameed et al., “Magnetic field effect on mixed convection flow inside an oval-shaped annulus enclosure filled by a non-Newtonian nanofluid,” Int. J. Thermofluids, vol. 21, pp. 100571, Feb. 2024. DOI: 10.1016/j.ijft.2024.100571.
  • Y. Varol, H. F. Oztop and T. Yilmaz, “Natural convection in triangular enclosures with protruding isothermal heater,” Int. J. Heat Mass Transf., vol. 50, no. 13–14, pp. 2451–2462, Jul. 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.12.027.
  • H. Saleh, R. Roslan and I. Hashim, “Natural convection heat transfer in a nanofluid-filled trapezoidal enclosure,” Int. J. Heat Mass Transf., vol. 54, no. 1–3, pp. 194–201, Jan. 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.09.053.
  • M. Ali, O. Zeitoun and S. Almotairi, “Natural convection heat transfer inside vertical circular enclosure filled with water-based Al2O3 nanofluids,” Int. J. Therm. Sci., vol. 63, pp. 115–124, Jan. 2013. DOI: 10.1016/j.ijthermalsci.2012.07.008.
  • S. Y. Motlagh and H. Soltanipour, “Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno’s two-phase model,” Int. J. Therm. Sci., vol. 111, pp. 310–320, Jan. 2017. DOI: 10.1016/j.ijthermalsci.2016.08.022.
  • M. Esfandiary, B. Mehmandoust, A. Karimipour and H. A. Pakravan, “Natural convection of Al2O3–water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: brownian motion and thermophoresis phenomenon,” Int. J. Therm. Sci., vol. 105, pp. 137–158, Jul. 2016. DOI: 10.1016/j.ijthermalsci.2016.02.006.
  • P. Barnoon, D. Toghraie, R. B. Dehkordi and M. Afrand, “Two phase natural convection and thermal radiation of Non-Newtonian nanofluid in a porous cavity considering inclined cavity and size of inside cylinders,” Int. Commun. Heat Mass Transf., vol. 108, pp. 104285, Nov. 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104285.
  • M. Siavashi, H. R. Talesh Bahrami and H. Saffari, “Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model,” Energy, vol. 93, pp. 2451–2466, Dec. 2015. DOI: 10.1016/j.energy.2015.10.100.
  • Q. R. Al-Amir et al., “Investigation of natural convection and entropy generation in a porous titled Z-staggered cavity saturated by TiO2-water nanouid,” Int. J. Thermofluids, vol. 19, pp. 100395, Aug. 2023. DOI: 10.1016/j.ijft.2023.100395.
  • A. Baïri, “New correlations for free convection with water-ZnO nanofluid saturated porous medium around a cubical electronic component in hemispherical cavity,” Heat Transf. Eng., vol. 41, no. 14, pp. 1275–1287, Aug. 2020. DOI: 10.1080/01457632.2019.1637142.
  • X. J. Huang and K. Vafai, “Nanofluid based natural convection in a three-dimensional horizontal annulus with a porous perturbation,” Eur. J. Mech. - B/Fluids, vol. 103, pp. 58–68, Jan–Feb. 2024. DOI: 10.1016/j.euromechflu.2023.08.006.
  • Z. Al-Dulaimi et al., “Enhanced conjugate natural convection in a corrugated porous enclosure with Ag-MgO hybrid nanofluid,” Int. J. Thermofluids, vol. 21, pp. 100574, Feb. 2024. DOI: 10.1016/j.ijft.2024.100574.
  • J. M. Khubeiz, E. Radziemska and W. M. Lewandowski, “Natural convective heat-transfers from an isothermal horizontal hemispherical cavity,” Appl. Energy, vol. 73, no. 3–4, pp. 261–275, Nov.-Nov. 2002. DOI: 10.1016/S0306-2619(02)00079-X.
  • S. Das and Y. Morsi, “Natural convection inside dome shaped enclosures,” Int. J. Numer. Methods Heat Fluid Flow, vol. 12, no. 2, pp. 126–141, Mar. 2002. DOI: 10.1108/09615530210418294.
  • E. H. Ridouane and A. Campo, “Free convection performance of circular cavities having two active curved vertical sides and two inactive curved horizontal sides,” Appl. Therm. Eng., vol. 26, no. 17–18, pp. 2409–2416, Dec. 2006. DOI: 10.1016/j.applthermaleng.2006.02.019.
  • A. Akbarinia and R. Laur, “Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two phase approach,” Int. J. Heat Fluid Flow, vol. 30, no. 4, pp. 706–714, Aug. 2009. DOI: 10.1016/j.ijheatfluidflow.2009.03.002.
  • M. Goodarzi et al., “Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model,” Int. J. Therm. Sci., vol. 75, pp. 204–220, Jan. 2014. DOI: 10.1016/j.ijthermalsci.2013.08.003.
  • Ç. Yıldız, A. E. Yıldız, M. Arıcı, N. A. Azmi and A. Shahsavar, “Influence of dome shape on flow structure, natural convection and entropy generation in enclosures at different inclinations: a comparative study,” Int. J. Mech. Sci., vol. 197, pp. 106321, May 2021. DOI: 10.1016/j.ijmecsci.2021.106321.
  • I. Hashim, A. I. Alsabery, M. A. Sheremet and A. J. Chamkha, “Numerical investigation of natural convection of Al2O3-water nanofluid in a wavy cavity with conductive inner block using Buongiorno’s two-phase model,” Adv. Powder Technol., vol. 30, no. 2, pp. 399–414, Feb. 2019. DOI: 10.1016/j.apt.2018.11.017.
  • K. S. Suganthi and K. S. Rajan, “Metal oxide nanofluids: review of formulation, thermo-physical properties, mechanisms, and heat transfer performance,” Renew. Sustain. Energy Rev., vol. 76, pp. 226–255, Sep. 2017. DOI: 10.1016/j.rser.2017.03.043.
  • N. Czaplicka, A. Grzegórska, J. Wajs, J. Sobczak and A. Rogala, “Promising nanoparticle-based heat transfer fluids—environmental and techno-economic analysis compared to conventional fluids,” Int. J. Mol. Sci., vol. 22, no. 17, pp. 9201, Aug. 2021. DOI: 10.3390/ijms22179201.
  • S. Choudhary, A. Sachdeva and P. Kumar, “Influence of stable zinc oxide nanofluid on thermal characteristics of flat plate solar collector,” Renew. Energy, vol. 152, pp. 1160–1170, Jun. 2020. DOI: 10.1016/j.renene.2020.01.142.
  • A. Zaraki, M. Ghalambaz, A. J. Chamkha, M. Ghalambaz and D. De Rossi, “Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature,” Adv. Powder Technol., vol. 26, no. 3, pp. 935–946, May 2015. DOI: 10.1016/j.apt.2015.03.012.
  • D. Yadav, G. S. Agrawal and R. Bhargava, “Thermal instability of rotating nanofluid layer,” Int. J. Eng. Sci., vol. 49, no. 11, pp. 1171–1184, Nov. 2011. DOI: 10.1016/j.ijengsci.2011.07.002.
  • M. Sheikholeslami, S. A. Shehzad, Z. Li and A. Shafee, “Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law,” Int. J. Heat Mass Transf., vol. 127, pp. 614–622, Dec. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.013.
  • J. N. Reddy, Introduction to the Finite Element Method. New York, NY: McGraw-Hill Education, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.