0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical Simulation of Effects of Catalyst Layer Parameters on Heat Transfer in Proton Exchange Membrane Fuel Cells

, , &

References

  • S. K. Das and A. S. Bansode, “Heat and mass transport in proton exchange membrane fuel cells-A review,” Heat Transf. Eng., vol. 30, no. 9, pp. 691–719, 2009. DOI: 10.1080/01457630802677997.
  • V. Velisala and N. S. Golagani, “Computational fluid dynamics study of serpentine flow field proton exchange membrane fuel cell performance,” Heat Transf. Eng., vol. 41, no. 6–7, pp. 650–664, 2020. DOI: 10.1080/01457632.2018.1546975.
  • S. Asal and Y. Serhat, “Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs,” Appl. Energy, vol. 339, pp. 121040, Jun. 2023. DOI: 10.1016/j.apenergy.2023.121040.
  • H. Chen, H. Guo, F. Ye, and C. F. Ma, “A numerical study of baffle height and location effects on mass transfer of proton exchange membrane fuel cells with orientated-type flow channels,” Int. J. Hydrogen Energy, vol. 46, no. 10, pp. 7528–7545, Feb. 2021. DOI: 10.1016/j.ijhydene.2020.11.226.
  • K.-M. Yin, “Parametric study of proton-exchange-membrane fuel cell cathode using an agglomerate model,” J. Electrochem. Soc, vol. 152, no. 3, pp. A583, Jan. 2005. DOI: 10.1149/1.1854611.
  • Q. P. Wang, D. T. Song, T. Navessin, S. Holdcroft, and Z. S. Liu, “A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells,” Electrochim. Acta, vol. 50, no. 2-3, pp. 725–730, Nov. 2004. DOI: 10.1016/j.electacta.2004.01.113.
  • N. Khajeh-Hosseini-Dalasm, M. Fesanghary, K. Fushinobu, and K. Okazaki, “A study of the agglomerate catalyst layer for the cathode side of a proton exchange membrane fuel cell: modeling and optimization,” Electrochim. Acta, vol. 60, pp. 55–65, Jan. 2012. DOI: 10.1016/j.electacta.2011.10.099.
  • M. Secanell, K. Karan, A. Suleman, and N. Djilali, “Multi-variable optimization of PEMFC cathodes using an agglomerate model,” Electrochim. Acta, vol. 52, no. 22, pp. 6318–6337, Jun. 2007. DOI: 10.1016/j.electacta.2007.04.028.
  • D. Song, Q. Wang, Z. Liu, T. Navessin, and S. Holdcroft, “Numerical study of PEM fuel cell cathode with non-uniform catalyst layer,” Electrochim. Acta, vol. 50, no. 2-3, pp. 731–737, Nov. 2004. DOI: 10.1016/j.electacta.2004.01.114.
  • K.-M. Yin, B.-S. Cheng, and K.-W. Chiang, “Non-uniform agglomerate cathode catalyst layer model on the performance of PEMFC with consideration of water effect,” Renew. Energy, vol. 95, pp. 191–201, Sep. 2016. DOI: 10.1016/j.renene.2016.04.015.
  • T. Suzuki, K. Kudo, and Y. Morimoto, “Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell,” J. Power Sources, vol. 222, pp. 379–389, Jan. 2013. DOI: 10.1016/j.jpowsour.2012.08.068.
  • Y.-T. Mu et al., “Numerical analyses on oxygen transport resistances in polymer electrolyte membrane fuel cells using a novel agglomerate model,” Int. J. Hydrog. Energy, vol. 48, no. 8, pp. 3232–3251, Jan. 2023. DOI: 10.1016/j.ijhydene.2022.10.158.
  • Q. Q. Wang et al., “Research progress of heat transfer inside proton exchange membrane fuel cells,” J. Power Sources, vol. 492, pp. 229613, Apr. 2021. DOI: 10.1016/j.jpowsour.2021.229613.
  • K. Dannenberg, P. Ekdunge, and G. Lindbergh, “Mathematical model of the PEMFC,” J. Appl. Electrochem., vol. 30, no. 12, pp. 1377–1387, Dec. 2000. DOI: 10.1023/A:1026534931174.
  • C.-Y. Jung, H.-S. Shim, S.-M. Koo, S.-H. Lee, and S.-C. Yi, “Investigations of the temperature distribution in proton exchange membrane fuel cells,” Appl. Energy, vol. 93, pp. 733–741, May 2012. DOI: 10.1016/j.apenergy.2011.08.035.
  • L. Xing et al., “A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell,” Energy, vol. 73, pp. 618–634, Aug. 2014. DOI: 10.1016/j.energy.2014.06.065.
  • L. Xing et al., “Anode partial flooding modelling of proton exchange membrane fuel cells: optimisation of electrode properties and channel geometries,” Chem. Eng. Sci., vol. 146, pp. 88–103, Jun. 2016. DOI: 10.1016/j.ces.2016.02.029.
  • L. Xing, “An agglomerate model for PEM fuel cells operated with non-precious carbon-based ORR catalysts,” Chem. Eng. Sci., vol. 179, pp. 198–213, Apr. 2018. DOI: 10.1016/j.ces.2018.01.026.
  • S. Li, J. Yuan, M. Andersson, G. Xie, and B. Sunden, “Influence of anisotropic gas diffusion layers on transport phenomena in a proton exchange membrane fuel cell,” Int. J. Energy Res., vol. 41, no. 14, pp. 2034–2050, Nov. 2017. DOI: 10.1002/er.3763.
  • S. Li, J. Yuan, M. Andersson, G. Xie, and B. Sunden, “Wavy surface cathode gas flow channel effects on transport processes in a proton exchange membrane fuel cell,” J. Electrochem. Energy Convers. Storage, vol. 14, no. 3, pp. 031007, Aug. 2017. DOI: 10.1115/1.4036810.
  • N. Kulkarni et al., “The effect of non-uniform compression on the performance of polymer electrolyte fuel cells,” J. Power Sources, vol. 521, pp. 230973, Feb. 2022. DOI: 10.1016/j.jpowsour.2021.230973.
  • Q. Q. Wang et al., “Study on the thermal transient of cathode catalyst layer in proton exchange membrane fuel cell under dynamic loading with a two-dimensional model,” Chem. Eng. J., vol. 433, pp. 133667, Apr. 2022. DOI: 10.1016/j.cej.2021.133667.
  • P. Barnoon, D. Toghraie, B. Mehmandoust, M. A. Fazilati, and S. A. Eftekhari, “Numerical modeling of species transport and functional characteristics of a proton exchange membrane fuel cell using an agglomerate model with a multi-phase model,” Energy Rep., vol. 8, pp. 11343–11362, Nov. 2022. DOI: 10.1016/j.egyr.2022.08.238.
  • Q. S. Liu, F. C. Lan, J. Q. Chen, J. F. Wang, and C. J. Zeng, “Effect of anisotropic transport properties of porous layers on the dynamic performance of proton exchange membrane fuel cell,” Int. J. Hydrogen Energy, vol. 48, no. 29, pp. 10982–11002, Apr. 2023. DOI: 10.1016/j.ijhydene.2022.12.161.
  • A. A. Shah et al., “The effects of water and microstructure on the performance of polymer electrolyte fuel cells,” J. Power Sources, vol. 160, no. 2, pp. 1251–1268, Oct. 2006. DOI: 10.1016/j.jpowsour.2006.02.085.
  • A. A. Shah, G.-S. Kim, P. C. Sui, and D. Harvey, “Transient non-isothermal model of a polymer electrolyte fuel cell,” J. Power Sources, vol. 163, no. 2, pp. 793–806, Jan. 2007. DOI: 10.1016/j.jpowsour.2006.09.022.
  • D. Harvey, J. G. Pharoah, and K. Karan, “A comparison of different approaches to modelling the PEMFC catalyst layer,” J. Power Sources, vol. 179, no. 1, pp. 209–219, Apr. 2008. DOI: 10.1016/j.jpowsour.2007.12.077.
  • G. L. Hu, G. N. Li, Y. Q. Zheng, Z. G. Zhang, and Y. S. Xu, “Optimization and parametric analysis of PEMFC based on an agglomerate model for catalyst layer,” J. Energy Inst., vol. 87, no. 2, pp. 163–174, May 2014. DOI: 10.1016/j.joei.2014.03.004.
  • T.-F. Yang, C.-H. Cheng, A. Su, T.-L. Yu, and L.-W. Hourng, “Numerical analysis of the manipulated high performance catalyst layer design for polymer electrolyte membrane fuel cell,” Int. J. Energy Res., vol. 38, no. 15, pp. 1937–1948, Dec. 2014. DOI: 10.1002/er.3198.
  • L. Xing, Y. Wang, P. K. Das, K. Scott, and W. Shi, “Homogenization of current density of PEM fuel cells by in-plane graded distributions of platinum loading and GDL porosity,” Chem. Eng. Sci., vol. 192, pp. 699–713, Dec. 2018. DOI: 10.1016/j.ces.2018.08.029.
  • D. H. Schwarz and N. Djilali, “Three-dimensional modelling of catalyst layers in PEM fuel cells: effects of non-uniform catalyst loading,” Int. J. Energy Res., vol. 33, no. 7, pp. 631–644, Jun. 2009. DOI: 10.1002/er.1497.
  • S. Li, J. Yuan, G. Xie, and B. Sunden, “Effects of agglomerate model parameters on transport characterization and performance of PEM fuel cells,” Int. J. Hydrogen Energy, vol. 43, no. 17, pp. 8451–8463, Apr. 2018. DOI: 10.1016/j.ijhydene.2018.03.106.
  • L. Hao, K. Moriyama, W. Gu, and C.-Y. Wang, “Modeling and experimental validation of Pt loading and electrode composition effects in PEM fuel cells,” J. Electrochem. Soc., vol. 162, no. 8, pp. F854–F867, May 2015. DOI: 10.1149/2.0221508jes.
  • P. He, Y.-T. Mu, J. W. Park, and W.-Q. Tao, “Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell,” Appl. Energy, vol. 277, pp. 115555, Nov. 2020. DOI: 10.1016/j.apenergy.2020.115555.
  • G. Zhang, B. Xie, Z. Bao, Z. Niu, and K. Jiao, “Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field,” Int. J. Energy Res., vol. 42, no. 15, pp. 4697–4709, Dec. 2018. DOI: 10.1002/er.4215.
  • B. Xie, G. B. Zhang, J. Xuan, and K. Jiao, “Three-dimensional multi-phase model of PEM fuel cell coupled with improved agglomerate sub-model of catalyst layer,” Energy Convers. Manage., vol. 199, pp. 112051, Nov. 2019. DOI: 10.1016/j.enconman.2019.112051.
  • B. Wang, B. Xie, J. Xuan, and K. Jiao, “AI-based optimization of PEM fuel cell catalyst layers for maximum power density via data-driven surrogate modeling,” Energy Convers. Manage, vol. 205, pp. 112460, Feb. 2020. DOI: 10.1016/j.enconman.2019.112460.
  • R. J. Yu, H. Guo, H. Chen, and F. Ye, “Designing graded fuel cell electrodes for proton exchange membrane (PEM) fuel cells with recurrent neural network (RNN) approaches,” Chem. Eng. Sci., vol. 267, pp. 118350, Mar. 2023. DOI: 10.1016/j.ces.2022.118350.
  • R. J. Yu, H. Guo, F. Ye, and H. Chen, “Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density,” Appl. Energy, vol. 324, pp. 119764, Oct. 2022. DOI: 10.1016/j.apenergy.2022.119764.
  • R. Yu, H. Guo, H. Chen, and F. Ye, “Influence of different parameters on PEM fuel cell output power: a three-dimensional simulation using agglomerate model,” Energy Convers. Manage., vol. 280, pp. 116845, Mar. 2023. DOI: 10.1016/j.enconman.2023.116845.
  • Y. X. Lou, M. S. Hao, and Y. S. Li, “Machine-learning-assisted insight into the cathode catalyst layer in proton exchange membrane fuel cells,” J. Power Sources, vol. 543, pp. 231827, Sep. 2022. DOI: 10.1016/j.jpowsour.2022.231827.
  • R. J. Yu, H. Guo, H. Chen, and F. Ye, “Heat and mass transfer at the interface between cathode catalyst layer and gas diffusion layer of a proton exchange membrane fuel cell,” Int. J. Heat Mass Transf., vol. 140, pp. 106548, Jan. 2023. DOI: 10.1016/j.icheatmasstransfer.2022.106548.
  • Y. T. Li, H. Guo, H. Chen, and F. Ye, “Effects of agglomerate parameters on heat transfer in a proton exchange membrane fuel cell,” Mech. Eng., vol. 44, no. 3, pp. 554–563, Feb. 2022 (in Chinese). DOI: 10.6052/1000-0879-21-586.
  • H. Chen, H. Guo, F. Ye, and C. F. Ma, “Forchheimer’s inertial effect on liquid water removal in proton exchange membrane fuel cells with baffled flow channels,” Int. J. Hydrogen Energy, vol. 46, no. 3, pp. 2990–3007, Jan. 2021. DOI: 10.1016/j.ijhydene.2020.05.082.
  • M. J. Lampinen, and M. Fomino, “Analysis of free energy and entropy changes for half-cell reactions,” J. Electrochem. Soc., vol. 140, no. 12, pp. 3537–3546, Dec. 1993. DOI: 10.1149/1.2221123.
  • J. R. Liang, Y. S. Li, R. Wang, and J. H. Jiang, “Cross-dimensional model of the oxygen transport behavior in low-Pt proton exchange membrane fuel cells,” Chem. Eng. J., vol. 400, pp. 125796, Nov. 2020. DOI: 10.1016/j.cej.2020.125796.
  • W. Sun, B. A. Peppley, and K. Karan, “An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters,” Electrochim. Acta, vol. 50, no. 16–17, pp. 3359–3374, May 2005. DOI: 10.1016/j.electacta.2004.12.009.
  • Y. T. Li, H. Guo, and F. Ye, “Heat and mass transfer in a proton exchange membrane fuel cell with gradient distribution of platinum loading along flow channel direction,” Intl J Energy Res., vol. 46, no. 7, pp. 8872–8890, Jun. 2022. DOI: 10.1002/er.7762.
  • H. Sun, and Y. H. Wu, “Effects of reactant flow rate and backpressure on the performance of PEM fuel cells,” J. Shenyang Jianzhu Univ (Natural Science), vol. 22, no. 6, pp. 1034–1037, Nov. 2006 (in Chinese).
  • J. Hou, et al., “Research progress on thermal management of proton exchange membrane fuel cells,” J. Central South Univ. (Science and Technology), vol. 52, no. 1, pp. 19–30, Jan. 2021 (in Chinese). DOI: 10.11817/j.issn.1672-7207.2021.01.003.
  • L. G. He, Y. Y. Yang, Y. Zhang, P. P. Li, and Y. J. Xin, “A review of thermal management of proton exchange membrane fuel cell systems,” J. Renew. Sustain. Ener, vol. 15, no. 1, pp. 012703, Jan. 2023. DOI: 10.1063/5.0127596.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.