144
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Design of Hamming Code Checker Using Titanium-Diffused Lithium Niobate-Based Waveguide

, ORCID Icon &
Pages 218-235 | Received 05 Dec 2018, Accepted 17 May 2019, Published online: 31 May 2019

References

  • G. P. Agrawal. Lightwave Technology: Components and Devices. Hoboken, New Jersey, USA: Wiley Interscience. 2004.
  • J. M. Senior, Optical Fiber Communications, Principles and Practice. 3rded. Edinburgh Gate, Harlow England: Prentice Hall, Pearson education Limited, 2009.
  • K. Hinton, et al., “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. QUANTUM Electron., vol. 14, no. 3, pp. 938–945, 2008. DOI: 10.1109/JSTQE.2008.916242.
  • H. J. S. Dorren et al., “Optical packet switching and buffering by using all-optical signal processing methods,” J. Light. Technol., vol. 21, no. 1, pp. 2–12, 2003. DOI: 10.1109/JLT.2002.803062.
  • G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Electron. Lett., vol. 27, no. 2, pp.118–120, 1991. DOI: 10.1049/el:19910079.
  • A. B. Carlson, P. B. Crilly, and J. C. Rutledge, “Channel encoding and encryption,” in Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 4thed., Mcgraw Hill, 2002, pp. 547–573. DOI: 10.1016/B978-0-12-415819-1.00012-X.
  • B. A. Forouzan. “Error detection and correction,” in Data Communications and Networking, 5thed., Chennai, India: McGraw Higher Education, 2013, pp. 257–284.
  • R. W. Hamming, “The Bell system technical journal,” Bell Syst. Tech. J., vol. XXVI, no. 2, pp. 147–160, 1950. DOI: 10.1016/S0016-0032(23)90506-5.
  • A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, “All-optical parity checker with bit-differential delay,” Opt. Commun., vol. 162, pp.37–43, April 1999. DOI: 10.1016/S0030-4018(99)00070-X.
  • D. Samanta and S. Mukhopadhyay, “All-optical method of developing parity generator and checker with polarization encoded light signal,” J. Opt., vol. 41, no. 3, pp. 167–172, 2012. DOI: 10.1007/s12596-012-0080-2.
  • Q. Wang et al., “Study of all-optical XOR using Mach – zehnder Interferometer and differential scheme,” IEEE J. Quantum Electron., vol. 40, no. 6, pp.703–710, 2004. DOI: 10.1109/JQE.2004.828261.
  • I. B. Djordjevic and M. Cvijetic, “Advanced schemes for all-optical computing, optical error correction, and optical signal processing,” Int. Conf. Trans. Opt. Netw., vol. 17, no. 8, pp. 2–7, 2015. DOI: 10.1109/ICTON.2015.7193635.
  • J.-Y. Kim, J.-M. Kang, T.-Y. Kim, and S.-K. Han, “All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment,” J. Light. Technol., vol. 24, no. 9, pp. 3392–3399, 2006. DOI: 10.1049/el:20063501.
  • R. Khatun, et al. “Optimization of 2 × 2 MZI electro-optic switch and its application as logic gate,” 18th Int Conf Comput. Inf. Technol., vol. 1, pp. 294–299, 2016. ICCIT 2015. DOI:10.1109/ICCITechn.2015.7488085.
  • E. Dimitriadou, K. E. Zoiros, T. Chattopadhyay, and J. N. Roy, “Design of ultrafast all-optical 4-bit parity generator and checker using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer,” J. Comput. Electron., vol. 12, no. 3, pp. 481–489, 2013. DOI: 10.1007/s10825-013-0463-x.
  • S. Kumar, Chanderkanta, and A. Amphawan. “Design of parity generator and checker circuit using electro-optic effect of Mach – Zehnder interferometers,” Opt. Commun., vol. 364, pp. 195–224, 2016, Elsevier. DOI:10.1016/j.optcom.2015.11.054.
  • J. K. Rakshit, J. N. Roy, and T. Chattopadhyay. “Design of micro-ring resonator based all-optical parity generator and checker circuit,” Opt. Commun., vol. 303, pp. 30–37, 2013, Elsevier. DOI:10.1016/j.optcom.2013.03.025.
  • V. K. Srivastava, et al. “Error detecting code for long haul network,” Proc. SPIE 10526, Phys. Simul. Optoelectronic Devices, vol. XXVI, February 2018. DOI: 10.1117/12.2288132.
  • K. R. Chowdhury, D. De, and S. Mukhopadhyay, “Parity checking and generating circuit with nonlinear material in all-optical domain,” Chinese Phys. Lett., vol. 22, no. 6, pp. 1433–1435, 2005. DOI: 10.1088/0256-307X/22/6/037.
  • M. Zhang, Y. Zhao, L. Wang, J. Wang, and P. Ye, “Design and analysis of all-optical XOR gate using SOA-based Mach-Zehnder interferometer,” Opt. Commun., vol. 223, pp. 301–308, 2003. DOI:10.1016/S0030-4018(03)01692-4.
  • K. E. Zoiros, G. Papadopoulos, T. Houbavlis, and G. T. Kanellos, “Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer,” Opt. Commun., vol. 258, pp. 114–134, 2006. DOI:10.1016/j.optcom.2005.07.059.
  • D. K. Gayen, A. Bhattachryya, T. Chattopadhyay, and J. N. Roy, “Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based mach-zehnder interferometer,” J. Light. Technol., vol. 30, no. 21, pp. 3387–3393, 2012. DOI: 10.1109/JLT.2012.2215579.
  • S. Cao, L. Sun, and M. Savoie, “2×2 MMI-MZI GaAs-GaAlAs carrier-injection optical switch,” in IEEE Photonics Society Summer Topical Meeting Series, PHOSST 2010, 2010. pp. 207–208. doi:10.1109/PHOSST.2010.5553687.
  • N. A. Mohammed, H. S. A. Elnasr, and M. H. Aly, “Performance Evaluation and Enhancement of 2 × 2 Ti : liNbO 3 Mach Zehnder Interferometer Switch at 1.3 µm and 1.55 µm,” Open Electr. Electron. Eng. J., vol. 6, pp. 36–49, 2012. DOI: 10.2174/1874129001206010036.
  • G. Singh, V. Janyani, and R. P. Yadav, “Modeling of a high performance Mach – Zehnder interferometer all optical switch,” Opt. Appl., vol. XLII, no. 3, pp. 613–625, 2012. DOI: 10.5277/oa120315.
  • G. Singh et al., “Design of 2 × 2 optoelectronic switch based on MZI and study the effect of electrode switching voltages,” in Journal of World Academy of Science, Engineering and technology, 2008, pp. 401–407.
  • S. Medhekar and P. P. Paltani. “Novel all-optical switch using nonlinear Mach-Zehnder interferometer,” Fiber Integr. Opt., vol. 28, October 2008, pp. 229–236, 2009. DOI: 10.1080/01468030802536599.
  • M. S. Jaber, S. K. Tawfeeq, and R. S. Fyath. “Design investigation of 2 × 2 Mach – Zehnder optical switch based on a metal – polymer – silicon hybrid plasmonic waveguide”. Fiber Integr. Opt., vol. 38, no. 1, pp. 21–42, 2018, Taylor & Francis. DOI: 10.1080/01468030.2018.1545267.
  • S. Mandal, D. Mandal, and S. K. Garai. “An all-optical method of developing data communication system with error detection circuit”. Opt. Fiber Technol., vol. 20, no. 2, pp. 120–129, 2014, Elsevier Inc. DOI: 10.1016/j.yofte.2014.01.003.
  • B. E. A. Saleh and M. C. Teich. Electro-Optics. Fundamentals of Photonics. John Wiley & Sons, Inc. 1991. DOI: 10.1002/0471213748.ch18.
  • C. Wang, H. Horimai, X. Lin, Y. Huang, and X. Tan, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express, vol. 26, no. 2, pp.1547–1555, 2018. DOI: 10.1364/OE.26.003828.
  • C. Wang et al., “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018) [doi:10.1038/s41586-018-0551-y].
  • G. Singh, R. P. Yadav, and V. Janyani, “Ti indiffused Lithium Niobate (Ti: liNbO3) Mach-Zehnder interferometer all optical switches: A review,” New Adv. Technol., Aleksandar Lazinica, IntechOpen, pp. 312–322, 2010 DOI:10.5772/9422.
  • M. M. Mano and M. D. Ciletti. Digital Design 5thed., New Delhi, India: Pearson Education,2014, pp. 347-350.
  • K. Kawano and T. Kitoh. “Beam propagation methods,” Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schroèdinger Equation, John Wiley & Sons, Inc, 2001, pp. 165–231. DOI: 10.1002/0471221600.ch5.
  • B. Hasenick. “The increasing importance of extinction ratio in telecommunications,” in lightwaveonline.com(October 2005), 2018.https://www.lightwaveonline.com/articles/2005/09/the-increasing-importance-of-extinction-ratio-in-telecommunications-53915762.html.
  • Z. Li, et al., “Extinction ratio effect for high-speed optical fiber transmissions,” International Conference on Communication Technology in Beijing China, ICCT’98, 1998, pp. 1–5.
  • A. Pal, S. Kumar, and S. Sharma, “Optical 1 ’ s and 2 ’ s complement devices using lithium-niobate-based waveguide,” Opt. Eng., vol. 55, no. 12, pp. 125104, 2016. DOI: 10.1117/1.OE.55.12.125104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.