1,851
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Guide for collecting and reporting metadata on protocol variables and parameters from slide-based histotechnology assays to enhance reproducibility

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ioannidis JP. Why most published research findings are false. PLoS Med. 2005;2(8):e124.
  • Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016;533(7604):452–454.
  • Freedman LP, Gibson MC, Bradbury ARM, et al. The need for improved education and training in research antibody usage and validation practices. Biotechniques. 2016;61(1):16–18.
  • Freedman LP, Cockburn IM, Simcoe TS. The economics of reproducibility in preclinical research. PLoS Biol. 2015;13(6):e1002165.
  • Freedman LP, Inglese J. The increasing urgency for standards in basic biologic research. Cancer Res. 2014;74(15):4024–4029.
  • Naudet F, Sakarovitch C, Janiaud P, et al. Data sharing and reanalysis of randomized controlled trials in leading biomedical journals with a full data sharing policy: survey of studies published in the BMJ and PLOS medicine. BMJ. 2018;360:k400.
  • Vasilevsky NA, Brush MH, Paddock H, et al. On the reproducibility of science: unique identification of research resources in the biomedical literature. PeerJ. 2013;1:e148.
  • Wallach OD, Boyack KW, Ioannidis JPA. Reproducible research practices, transparency, and open access data in the biomedical literature, 2015-2017. PLoS Biol. 2018;16(11):e2006930.
  • Iqbal SA, Wallach JD, Khoury MJ, et al. Reproducible research practices and transparency across the biomedical literature. PLoS Biol. 2016;14(1):e1002333.
  • Landis SC, Amara SG, Asadullah K, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature. 2012;490(7419):187–191.
  • Ioannidis JP, Greenland S, Hlatky MA, et al. Increasing value and reducing waste in research design, conduct, and analysis. Lancet. 2014;383(9912):166–175.
  • Freedman LP, Venugopalan G, Wisman R. Reproducibility 2020: progress and priorities. F1000Research. 2017;6:604.
  • Prager EM, Chambers KE, Plotkin JL, et al. Improving transparency and scientific rigor in academic publishing. Brain Behav. 2019;9(1):e01141.
  • Penney DP. A brief history of the biological stain commission: its founders, its mission and the first 75 years. Biotech Histochem. 2000;75(4):154–166.
  • Wick MR. Diagnostic histochemistry: a historical perspective. Semin Diagn Pathol. 2018;35(6):354–359.
  • Wick MR. The hematoxylin and eosin stain in anatomic pathology—An often-neglected focus of quality assurance in the laboratory. Semin Diagn Pathol. 2019;36(5):303–311.
  • Riva MA, Manzoni M, Isimbaldi G, et al. Histochemistry: historical development and current use in pathology. Biotech Histochem. 2014;89(2):81–90.
  • Romano LA, Pedrosa VF. Re-claiming H&E: back to the future. Postgrad Med J. 2020;96(1131):58.
  • Meier-Ruge WA, Bruder E. Current concepts of enzyme histochemistry in modern pathology. Pathobiology. 2008;75(4):233–243.
  • Baker M. Antibody anarchy: a call to order. Nature. 2015;527(7579):545–551.
  • Baker M. Reproducibility crisis: blame it on the antibodies. Nature. 2015;521(7552):274–276.
  • Bordeaux J, Welsh AW, Agarwal S, et al. Antibody validation. Biotechniques. 2010;48(3):197–209.
  • Bradbury A, Pluckthun A. Reproducibility: standardize antibodies used in research. Nature. 2015;518(7537):27–29.
  • Coons AH, Creech HJ, Jones RN, et al. The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol. 1942;45(3):159–170.
  • Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer research. Nature. 2012;483(7391):531–533.
  • Egelhofer TA, Minoda A, Klugman S, et al. An assessment of histone-modification antibody quality. Nat Struct Mol Biol. 2011;18(1):91–93.
  • Couchman JR. Commercial antibodies: the good, bad, and really ugly. J Histochem Cytochem. 2009;57(1):7–8.
  • Saper CB. A guide to the perplexed on the specificity of antibodies. J Histochem Cytochem. 2009;57(1):1–5.
  • Rimm D, Uhlen M, LaBaer ARM, et al. Antibody validation standards, policies and practices. In: GBSI workshop report, Asilomar conference, CA, USA. Washington (DC): Global Biological Standards Institute; 2016.
  • Roncador G, Engel P, Maestre L, et al. The European antibody network’s practical guide to finding and validating suitable antibodies for research. mAbs. 2016;8(1):27–36.
  • Uhlen M, Bandrowski A, Carr S, et al. A proposal for validation of antibodies. Nat Methods. 2016;13(10):823–827.
  • Cattoretti G. Standardization and reproducibility in diagnostic immunohistochemistry. Hum Pathol. 1994;25(10):1107–1109.
  • O’Leary TJ. Standardization in immunohistochemistry. Appl Immunohistochem Mol Morphol. 2001;9(1):3–8.
  • Sfanos KS, Yegnasubramanian S, Nelson WG, et al. If this is true, what does it imply? How end-user antibody validation facilitates insights into biology and disease. Asian J Urol. 2019;6(1):10–25.
  • Taylor CR. Immunohistochemistry: growing pains, from a stain to an assay. Appl Immunohistochem Mol Morphol. 2019;27(5):325–326.
  • Torlakovic EE. How to Validate predictive immunohistochemistry testing in pathology? Arch Pathol Lab Med. 2019;143(8):907.
  • Gibson-Corley KN, Hochstedler C, Sturm M, et al. Successful integration of the histology core laboratory in translational research. J Histotechnol. 2012;35(1):17–21.
  • Goldstein NS, Hewitt SM, Taylor CR, et al. Recommendations for improved standardization of immunohistochemistry. Appl Immunohistochem Mol Morphol. 2007;15(2):124–133.
  • Anagnostou VK, Welsh AW, Giltnane JM, et al. Analytic variability in immunohistochemistry biomarker studies. Cancer Epidemiol Biomarkers Prev. 2010;19(4):982–991.
  • Baskin DG, Hewitt SM. Improving the state of the science of immunohistochemistry: the Histochemical Society’s standards of practice. J Histochem Cytochem. 2014;62(10):691–692.
  • Kalyuzhny AE. The dark side of the immunohistochemical moon: industry. J Histochem Cytochem. 2009;57(12):1099–1101.
  • Taylor CR. An exaltation of experts: concerted efforts in the standardization of immunohistochemistry. Hum Pathol. 1994;25(1):2–11.
  • Taylor CR. Predictive biomarkers and companion diagnostics. The future of immunohistochemistry: “in situ proteomics,” or just a “stain”? Appl Immunohistochem Mol Morphol. 2014;22(8):555–561.
  • Pardue ML, Gall JG. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci. 1969;64(2):600–604.
  • Singer RH, Ward DC. Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinylated nucleotide analog. Proc Natl Acad Sci. 1982;79(23):7331–7335.
  • Femino AM, Fay FS, Fogarty K, et al. Visualization of single RNA transcripts in situ. Science. 1998;280(5363):585–590.
  • Raj A, van den Bogaard P, Rifkin SA, et al. Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods. 2008;5(10):877–879.
  • Player AN, Shen L-P, Kenny D, et al. Single-copy gene detection using branched DNA (bDNA) in situ hybridization. J Histochem Cytochem. 2001;49(5):603–612.
  • Wang F, Flanagan J, Su N, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22–29.
  • Choi HM, Beck VA, Pierce NA. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano. 2014;8(5):4284–4294.
  • Kishi JY, Lapan SW, Beliveau BJ, et al. SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat Methods. 2019;16(6):533–544.
  • Leung HY, Yeung MHY, Leung WT, et al. The current and future applications of in situ hybridization technologies in anatomical pathology. Expert Rev Mol Diagn. 2022;22(1):5–18.
  • Young AP, Jackson DJ, Wyeth RC. A technical review and guide to RNA fluorescence in situ hybridization. PeerJ. 2020;8:e8806.
  • Hicks DG, Longoria G, Pettay J, et al. In situ hybridization in the pathology laboratory: general principles, automation, and emerging research applications for tissue-based studies of gene expression. J Mol Histol. 2004;35(6):595–601.
  • Gase J. Illuminating the history and process of photomicrography at the National Museum of Health and Medicine. 2019 [cited 2022 Jun 29]; Available from: https://www.medicalmuseum.mil/micrograph/index.cfm/posts/2019/photomicrography_history#:~:text=Some%20attribute%20it%20to%20Thomas,the%20first%20photomicrographs%3A%20plant%20sections
  • Morrison AO, Gardner JM. Microscopic image photography techniques of the past, present, and future. Arch Pathol Lab Med. 2015;139(12):1558–1564.
  • Riley RS, Ben-Ezra JM, Massey D, et al. Digital photography: a primer for pathologists. J Clin Lab Anal. 2004;18(2):91–128.
  • Pantanowitz L, Parwani AV. Digital images and the future of digital pathology. J Pathol Inform. 2010;1(1):1.
  • Pantanowitz L, Sharma A, Carter AB, et al. Twenty Years of digital pathology: an overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives. J Pathol Inform. 2018;9(1):40.
  • Rossner M, Yamada KM. What’s in a picture? The temptation of image manipulation. J Cell Biol. 2004;166(1):11–15.
  • Rossner M. The JCB 2003: progress, policies, and procedures. J Cell Biol. 2003;161(5):837–838.
  • Byers HR, Bhawan J. Pathologic parameters in the diagnosis and prognosis of primary cutaneous melanoma. Hematol Oncol Clin North Am. 1998;12(4):717–735.
  • Cree IA, Tan PH, Travis WD, et al. Counting mitoses: SI(ze) matters! Mod Pathol. 2021;34(9):1651–1657.
  • Tizhoosh HR, Diamandis P, Campbell CJV, et al. Searching images for consensus: can AI remove observer variability in pathology? Am J Pathol. 2021;191(10):1702–1708.
  • Van Bockstal MR, Berlière M, Duhoux FP, et al. Interobserver variability in ductal carcinoma in situ of the breast. Am J Clin Pathol. 2020;154(5):596–609.
  • Crissman JW, Goodman DG, Hildebrandt PK, et al. Best practices guideline: toxicologic histopathology. Toxicol Pathol. 2004;32(1):126–131.
  • Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Vet Pathol. 2013;50(6):1007–1015.
  • Meyerholz DK, Beck AP. Principles and approaches for reproducible scoring of tissue stains in research. Lab Invest. 2018;98(7):844–855.
  • Tuomari D, Elliott G, Kulwich B, et al. Society of Toxicologic pathology position on histopathology data collection and audit trail: compliance with 21 CFR parts 58 and 11. Toxicol Pathol. 2004;32(1):122–123.
  • Evans AJ, Brown RW, Bui MM, et al. Validating whole slide imaging systems for diagnostic purposes in pathology. Arch Pathol Lab Med. 2022;146(4):440–450.
  • Chlipala E, Bendzinski CM, Chu K, et al. Optical density-based image analysis method for the evaluation of hematoxylin and eosin staining precision. J Histotechnol. 2020;43(1):29–37.
  • Wu Y, Cheng M, Huang S, et al. Recent advances of deep learning for computational histopathology: principles and applications. Cancers (Basel). 2022;14(5):1199.
  • Smith B, Hermsen M, Lesser E, et al. Developing image analysis pipelines of whole-slide images: pre- and post-processing. J Clin Transl Sci. 2021;5(1):e38.
  • Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: challenges and opportunities. Med Image Anal. 2016;33:170–175.
  • Lara H, Li Z, Abels E, et al. Quantitative image analysis for tissue biomarker use: a white paper from the digital pathology association. Appl Immunohistochem Mol Morphol. 2021;29(7):479–493.
  • Zarella MD, Bowman; D, Aeffner F, et al. A practical guide to whole slide imaging: a white paper from the digital pathology association. Arch Pathol Lab Med. 2019;143(2):222–234.
  • Health CDRH. Technical performance assessment of digital pathology whole slide imaging devices. Guidance for industry and food and drug administration staff. USDOHAHSFAD Administration, Editor. 2016.
  • Boehm U, Nelson G, Brown CM, et al. QUAREP-LiMi: a community endeavor to advance quality assessment and reproducibility in light microscopy. Nat Methods. 2021;18(12):1423–1426.
  • Koch M, Symvoulidis P, Ntziachristos V. Tackling standardization in fluorescence molecular imaging. Nat Photonics. 2018;12(9):505–515.
  • Levenson R, Beechem J, McNamara G. Spectral imaging in preclinical research and clinical pathology. Anal Cell Pathol (Amst). 2012;35(5–6):339–361.
  • Linden MA, Sedgewick GJ, Ericson M. An innovative method for obtaining consistent images and quantification of histochemically stained specimens. J Histochem Cytochem. 2015;63(4):233–243.
  • Macville MV, Van der Laak JAWM, Speel EJM, et al. Spectral imaging of multi-color chromogenic dyes in pathological specimens. Anal Cell Pathol. 2001;22(3):133–142.
  • Menke J, Roelandse M, Ozyurt B, et al. The Rigor and transparency index quality metric for assessing biological and medical science methods. iScience. 2020;23(11):101698.
  • Kilkenny C, Browne WJ, Cuthill IC, et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010;1(2):94–99.
  • Scudamore CL, Soilleux EJ, Karp NA, et al. Recommendations for minimum information for publication of experimental pathology data: MINPEPA guidelines. J Pathol. 2016;238(2):359–367.
  • Macleod M, Collings AM, Graf C, et al. The MDAR (Materials design analysis reporting) framework for transparent reporting in the life sciences. Proc Nat Acad Sci. 2021;118(17):e2103238118.
  • Tonzani S, Fiorani S. The STAR Methods way towards reproducibility and open science. iScience. 2021;24(4):102137.
  • Bandrowski A, Brush M, Grethe JS, et al. The Resource Identification Initiative: a cultural shift in publishing. F1000Res. 2015;4:134.
  • Collins FS, Tabak LA. Policy: NIH plans to enhance reproducibility. Nature. 2014;505(7485):612–613.
  • Luo Y, Hitz BC, Gabdank I, et al. New developments on the Encyclopedia of DNA elements (ENCODE) data portal. Nucleic Acids Res. 2020;48(D1):D882–D889.
  • Sloan CA, Chan ET, Davidson JM, et al. ENCODE data at the ENCODE portal. Nucleic Acids Res. 2016;44(D1):D726–32.
  • Engel KB, Moore HM. Effects of preanalytical variables on the detection of proteins by immunohistochemistry in formalin-fixed, paraffin-embedded tissue. Arch Pathol Lab Med. 2011;135(5):537–543.
  • Taylor CR. The total test approach to standardization of immunohistochemistry. Arch Pathol Lab Med. 2000;124(7):945–951.
  • Grillo F, Bruzzone M, Pigozzi S, et al. Immunohistochemistry on old archival paraffin blocks: is there an expiry date? J Clin Pathol. 2017;70(11):988–993.
  • Bass BP, Engel KB, Greytak SR, et al. A review of preanalytical factors affecting molecular, protein, and morphological analysis of formalin-fixed, paraffin-embedded (FFPE) tissue: how well do you know your FFPE specimen? Arch Pathol Lab Med. 2014;138(11):1520–1530.
  • Brown RW, Speranza VD, Alvarez JO, et al. Uniform labeling of blocks and slides in surgical pathology: guideline from the College of American pathologists Pathology and laboratory quality center and the national society for histotechnology. Arch Pathol Lab Med. 2015;139(12):1515–1524.
  • Baena-Del Valle JA, Zheng Q, Hicks JL, et al. Rapid loss of RNA detection by in situ hybridization in stored tissue blocks and preservation by cold storage of unstained slides. Am J Clin Pathol. 2017;148(5):398–415.
  • Fitzgibbons PL. Challenges in improving preanalytic specimen handling of routine cancer biospecimens. Arch Pathol Lab Med. 2019;143(11):1300–1301.
  • Compton CC, Robb JA, Anderson MW, et al. Preanalytics and precision pathology: pathology practices to ensure molecular integrity of cancer patient biospecimens for precision medicine. Arch Pathol Lab Med. 2019;143(11):1346–1363.
  • Fitzgibbons PL, Bradley LA, Fatheree LA, et al. Principles of analytic validation of immunohistochemical assays: guideline from the college of American pathologists pathology and laboratory quality center. Arch Pathol Lab Med. 2014;138(11):1432–1443.
  • Grillo F, Pigozzi S, Ceriolo P, et al. Factors affecting immunoreactivity in long-term storage of formalin-fixed paraffin-embedded tissue sections. Histochem Cell Biol. 2015;144(1):93–99.
  • Hojat A, Wei B, Olson MG, et al. Procurement and storage of surgical biospecimens. Methods Mol Biol. 2019;1897:65–76.
  • Gruber HE, Ingram J, Zinchenko N, et al. Practical histological methods for use with cultured cells. Biotech Histochem. 2009;84(6):283–286.
  • Rao S, Masilamani S, Sundaram S, et al. Quality measures in pre-analytical phase of tissue processing: understanding its value in histopathology. J Clin Diagn Res. 2016;10(1):EC07–11.
  • Mullink H, Henzen-Logmans SC, Tadema TM, et al. Influence of fixation and decalcification on the immunohistochemical staining of cell-specific markers in paraffin-embedded human bone biopsies. J Histochem Cytochem. 1985;33(11):1103–1109.
  • Kapila SN, Boaz K, Natarajan S. The post-analytical phase of histopathology practice: storage, retention and use of human tissue specimens. Int J Appl Basic Med Res. 2016;6(1):3–7.
  • Shidham VB. CellBlockistry: chemistry and art of cell-block making - A detailed review of various historical options with recent advances. Cytojournal. 2019;16:12.
  • McGoogan E, Colgan TJ, Ramzy I, et al. Cell preparation methods and criteria for sample adequacy. International academy of cytology task force summary. diagnostic cytology towards the 21st century: an international expert conference and tutorial. Acta Cytol. 1998;42(1):25–32.
  • Grizzle WE. Special symposium: fixation and tissue processing models. Biotech Histochem. 2009;84(5):185–193.
  • Chung JY, Song JS, Ylaya K, et al. Histomorphological and molecular assessments of the fixation times comparing formalin and ethanol-based fixatives. J Histochem Cytochem. 2018;66(2):121–135.
  • Otali D, He Q, Stockard CR, et al. Preservation of immunorecognition by transferring cells from 10% neutral buffered formalin to 70% ethanol. Biotech Histochem. 2013;88(3–4):170–180.
  • Quintana C. Cryofixation, cryosubstitution, cryoembedding for ultrastructural, immunocytochemical and microanalytical studies. Micron. 1994;25(1):63–99.
  • Bouzari N, Olbricht S. Histologic pitfalls in the Mohs technique. Dermatol Clin. 2011;29(2):261–272.
  • Miller LJ, Argenyi ZB, Whitaker DC. The preparation of frozen sections for micrographic surgery. A review of current methodology. J Dermatol Surg Oncol. 1993;19(11):1023–1029.
  • Shi SR, Liu C, Pootrakul L, et al. Evaluation of the value of frozen tissue section used as “gold standard” for immunohistochemistry. Am J Clin Pathol. 2008;129(3):358–366.
  • Kawamoto T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol. 2003;66(2):123–143.
  • Liou W, Geuze HJ, Slot JW. Improving structural integrity of cryosections for immunogold labeling. Histochem Cell Biol. 1996;106(1):41–58.
  • Litwin JA. Light microscopic histochemistry on plastic sections. Prog Histochem Cytochem. 1985;16(2):1–84.
  • Masuda T, Kawaguchi J, Oikawa H, et al. How thick are the paraffin-embedded tissue sections routinely prepared in laboratory? A morphometric study using a confocal laser scanning microscope. Pathol Int. 1998;48(3):179–183.
  • Pearse AD, Marks R. Measurement of section thickness in quantitative microscopy with special reference to enzyme histochemistry. J Clin Pathol. 1974;27(8):615–618.
  • McCampbell AS, Raghunathan V, Tom-Moy M, et al. Tissue thickness effects on immunohistochemical staining intensity of markers of cancer. Appl Immunohistochem Mol Morphol. 2017;27(5):345–355.
  • Libard S, Cerjan D, Alafuzoff I. Characteristics of the tissue section that influence the staining outcome in immunohistochemistry. Histochem Cell Biol. 2019;151(1):91–96.
  • Grube D. Constants and variables in immunohistochemistry. Arch Histol Cytol. 2004;67(2):115–134.
  • Gambella A, Porro L, Pigozzi S, et al. Section detachment in immunohistochemistry: causes, troubleshooting, and problem-solving. Histochem Cell Biol. 2017;148(1):95–101.
  • Cheung CC, Swanson PE, Nielsen S, et al. Uneven staining in automated immunohistochemistry: cold and hot zones and implications for immunohistochemical analysis of biopsy specimens. Appl Immunohistochem Mol Morphol. 2018;26(5):299–304.
  • Pinhel IF, MacNeill FA, Hills MJ, et al. Extreme loss of immunoreactive p-Akt and p-Erk1/2 during routine fixation of primary breast cancer. Breast Cancer Res. 2010;12(5):R76.
  • Blows FM, Ali HR, Dawson S-J, et al. Decline in antigenicity of tumor markers by storage time using pathology sections cut from tissue microarrays. Appl Immunohistochem Mol Morphol. 2016;24(3):221–226.
  • Economou M, Schöni L, Hammer C, et al. Proper paraffin slide storage is crucial for translational research projects involving immunohistochemistry stains. Clin Transl Med. 2014;3(1):4.
  • Fergenbaum JH, Garcia-Closas M, Hewitt SM, et al. Loss of antigenicity in stored sections of breast cancer tissue microarrays. Cancer Epidemiol Biomarkers Prev. 2004;13(4):667–672.
  • Rasmussen BB. Letter to the Editor. Mod Pathol. 2005;18(8):1145. author reply 1146-7.
  • Mirlacher M, Kasper M, Storz M, et al. Influence of slide aging on results of translational research studies using immunohistochemistry. Mod Pathol. 2004;17(11):1414–1420.
  • Wolf C, Jarutat T, Vega Harring S, et al. Determination of phosphorylated proteins in tissue specimens requires high-quality samples collected under stringent conditions. HIstopathol. 2014;64(3):431–444.
  • Xie R, Chung J-Y, Ylaya K, et al. Factors influencing the degradation of archival formalin-fixed paraffin-embedded tissue sections. J Histochem Cytochem. 2011;59(4):356–365.
  • Sasaki T, Kawabata Y, Suzuki N, et al. Decreased D2-40 immunoreactivity in stored paraffin sections and methods for preserving it. Biotech Histochem. 2014;89(6):412–418.
  • Gelb AB, Freeman VA, Astrow SH. Evaluation of methods for preserving PTEN antigenicity in stored paraffin sections. Appl Immunohistochem Mol Morphol. 2011;19(6):569–573.
  • Forse CL, Pinnaduwage D, Bull SB, et al. Fresh cut versus stored cut paraffin-embedded tissue: effect on immunohistochemical staining for common Breast cancer markers. Appl Immunohistochem Mol Morphol. 2018;27(3):231.
  • Omilian AR, Zirpoli GR, Cheng T-YD, et al. Storage of breast conditions and immunoreactivity cancer subtyping markers in tissue microarray sections. Appl Immunohistochem Mol Morphol. 2020;28(4):267–273.
  • Takada N, Hirokawa M, Ohbayashi C, et al. Re-evaluation of MIB-1 immunostaining for diagnosing hyalinizing trabecular tumour of the thyroid: semi-automated techniques with manual antigen retrieval are more accurate than fully automated techniques. Endocr J. 2018;65(2);239–244.
  • Prichard JW. Overview of automated immunohistochemistry. Arch Pathol Lab Med. 2014;138(12):1578–1582.
  • Valli V, Peters E, Williams C, et al. Optimizing methods in immunocytochemistry: one laboratory’s experience. Vet Clin Pathol. 2009;38(2):261–269.
  • Arihiro K, Umemura S, Kurosumi M, et al. Comparison of evaluations for hormone receptors in breast carcinoma using two manual and three automated immunohistochemical assays. Am J Clin Pathol. 2007;127(3):356–365.
  • Biesterfeld S, Kraus HL, Reineke T, et al. Analysis of the reliability of manual and automated immunohistochemical staining procedures. A pilot study. Anal Quant Cytol Histol. 2003;25(2):90–96.
  • Le Neel T, Moreau A, Laboisse C, et al. Comparative evaluation of automated systems in immunohistochemistry. Clin Chim Acta. 1998;278(2):185–192.
  • Moreau A, Le Neel T, Joubert M, et al. Approach to automation in immunohistochemistry. Clin Chim Acta. 1998;278(2):177–184.
  • Takahashi T, Ishiguro K. Development of an automatic machine for in situ hybridization and immunohistochemistry. Anal Biochem. 1991;196(2):390–402.
  • MaWhinney WH, Warford A, Rae MJ, et al. Automated immunochemistry. J Clin Pathol. 1990;43(7):591–596.
  • Cohen C, Unger ER, Sgoutas D, et al. Automated immunohistochemical estrogen receptor in fixed embedded breast carcinomas: comparison with manual immunohistochemistry on frozen tissues. Am J Clin Pathol. 1989;92(5):669–672.
  • Basu A, Chiriboga L, Narula N, et al. Validation of PD-L1 clone 22C3 immunohistochemical stain on two Ventana DISCOVERY autostainer models: detailed protocols, test performance characteristics, and interobserver reliability analyses. J Histotechnol. 2020;43(4):174–181.
  • Arnold MM, Srivastava S, Fredenburgh J, et al. Effects of fixation and tissue processing on immunohistochemical demonstration of specific antigens. Biotech Histochem. 1996;71(5):224–230.
  • Henwood AF. The application of heated detergent dewaxing and rehydration to immunohistochemistry. Biotech Histochem. 2012;87(1):46–50.
  • Pandey P, Dixit A, Tanwar A, et al. A comparative study to evaluate liquid dish washing soap as an alternative to xylene and alcohol in deparaffinization and hematoxylin and eosin staining. J Lab Physicians. 2014;6(2):84–90.
  • Premalatha BR Patil S, Rao RS, et al. Mineral Oil—A biofriendly substitute for xylene in deparaffinization: a novel method. J Contemp Dent Pract. 2013;14(2):281–286.
  • Kalantari N, Bayani M, Ghaffari T. Deparaffinization of formalin-fixed paraffin-embedded tissue blocks using hot water instead of xylene. Anal Biochem. 2016;507:71–73.
  • Faoláin EÓ, Hunter MB, Byrne JM, et al. Raman spectroscopic evaluation of efficacy of current paraffin wax section dewaxing agents. J Histochem Cytochem. 2005;53(1):121–129.
  • Paulsen IM, Dimke H, Frische S. A single simple procedure for dewaxing, hydration and heat-induced epitope retrieval (HIER) for immunohistochemistry in formalin fixed paraffin-embedded tissue. Eur J Histochem. 2015;59(4):2532.
  • Dapson RW. Dye-tissue interactions: mechanisms, quantification and bonding parameters for dyes used in biological staining. Biotech Histochem. 2005;80(2):49–72.
  • Titford M. The long history of hematoxylin. Biotech Histochem. 2005;80(2):73–78.
  • Horobin RW. Biological staining: mechanisms and theory. Biotech Histochem. 2002;77(1):3–13.
  • Kugler P. Enzyme histochemical methods applied in the brain. Eur J Morphol. 1990;28(2–4):109–120.
  • Emoto K, Yamashita S, Okada Y. Mechanisms of heat-induced antigen retrieval: does pH or ionic strength of the solution play a role for refolding antigens? J Histochem Cytochem. 2005;53(11):1311–1321.
  • Bogen SA, Vani K, Sompuram SR. Molecular mechanisms of antigen retrieval: antigen retrieval reverses steric interference caused by formalin-induced cross-links. Biotech Histochem. 2009;84(5):207–215.
  • Fowler CB, Evers DL, O’Leary TJ, et al. Antigen retrieval causes protein unfolding: evidence for a linear epitope model of recovered immunoreactivity. J Histochem Cytochem. 2011;59(4):366–381.
  • Shi SR, Shi Y, Taylor CR, et al. New dimensions of antigen retrieval technique: 28 years of development, practice, and expansion. Appl Immunohistochem Mol Morphol. 2019;27(10):715–721.
  • Boenisch T. Pretreatment for immunohistochemical staining simplified. Appl Immunohistochem Mol Morphol. 2007;15(2):208–212.
  • Ramos-Vara JA. Principles and methods of immunohistochemistry. Methods Mol Biol. 2017;1641:115–128.
  • Buchwalow I, Samoilova V, Boecker W, et al. Non-specific binding of antibodies in immunohistochemistry: fallacies and facts. Sci Rep. 2011;1(1):28.
  • Boenisch T. Formalin-fixed and heat-retrieved tissue antigens: a comparison of their immunoreactivity in experimental antibody diluents. Appl Immunohistochem Mol Morphol. 2001;9(2):176–179.
  • Gendusa R, Scalia CR, Buscone S, et al. Elution of High-affinity (>10-9 K D) antibodies from tissue sections. J Histochem Cytochem. 2014;62(7):519–531.
  • Lott RL, Riccelli PV, Sheppard EA, et al. Immunohistochemical validation of rare tissues and antigens with low frequency of occurrence: recommendations from the Anatomic Pathology Patient Interest Association (APPIA). Appl Immunohistochem Mol Morphol. 2021;29(5):327.
  • Buchwalow I, Samoilova V, Boecker W, et al. Multiple immunolabeling with antibodies from the same host species in combination with tyramide signal amplification. Acta Histochem. 2018;120(5):405–411.
  • Wang H, Su N, Wang LC, et al. Quantitative ultrasensitive bright-field RNA in situ hybridization with RNAscope. Methods Mol Biol. 2014;1211:201–212.
  • Liu W, Song H, Chen Q, et al. Recent advances in the selection and identification of antigen-specific nanobodies. Mol Immunol. 2018;96:37–47.
  • Muyldermans S. Applications of Nanobodies. Annu Rev Anim Biosci. 2021;9(1):401–421.
  • Takahashi M, Sakota E, Nakamura Y. The efficient cell-SELEX strategy, Icell-SELEX, using isogenic cell lines for selection and counter-selection to generate RNA aptamers to cell surface proteins. Biochimie. 2016;131:77–84.
  • Bukari BA, Citartan M, Ch’ng ES, et al. Aptahistochemistry in diagnostic pathology: technical scrutiny and feasibility. Histochem Cell Biol. 2017;147(5):545–553.
  • Pu Y, Liu Z, Lu Y, et al. Using DNA aptamer probe for immunostaining of cancer frozen tissues. Anal Chem. 2015;87(3):1919–1924.
  • de Castro MA, Rammner B, Opazo F. Aptamer Stainings for Super-resolution Microscopy. Methods Mol Biol. 2016;1380:197–210.
  • Karp NA, Fry D. What is the optimum design for my animal experiment? BMJ Open Sci. 2021;5(1):e100126.
  • Roth J. Lectins for histochemical demonstration of glycans. Histochem Cell Biol. 2011;136(2):117–130.
  • Sorrelle N, Ganguly D, Dominguez ATA, et al. Improved multiplex immunohistochemistry for immune microenvironment evaluation of mouse formalin-fixed, paraffin-embedded tissues. J Immunol. 2018;202(1):292–299.
  • Bolognesi MM, Manzoni M, Scalia CR, et al. Multiplex staining by sequential immunostaining and antibody removal on routine tissue sections. J Histochem Cytochem. 2017;65(8):431–444.
  • Krenacs T, Krenacs L, Raffeld M. Multiple antigen immunostaining procedures. Methods Mol Biol. 2010;588:281–300.
  • van den Brand M, Hoevenaars BM, Sigmans JHM, et al. Sequential immunohistochemistry: a promising new tool for the pathology laboratory. Histopathology. 2014;65(5):651–657.
  • Paulsen JD, Zeck B, Sun K, et al. Keratin 19 and mesenchymal markers for evaluation of epithelial-mesenchymal transition and stem cell niche components in primary biliary cholangitis by sequential elution-stripping multiplex immunohistochemistry. J Histotechnol. 2020;43(4):163–173.
  • Black S, Phillips D, Hickey JW, et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat Protoc. 2021;16(8):3802–3835.
  • Laberiano-Fernández C, Hernández-Ruiz S, Rojas F, et al. Best practices for technical reproducibility assessment of multiplex Immunofluorescence. Front Mol Biosci. 2021;8:660202.
  • Taube JM, Akturk G, Angelo M, et al. The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation. J Immunother Cancer. 2020;8(1):e000155.
  • Schofer C, Weipoltshammer K, Almeder M, et al. Signal amplification at the ultrastructural level using biotinylated tyramides and immunogold detection. Histochem Cell Biol. 1997;108(4–5):313–319.
  • Hunyady B, Krempels K, Harta G, et al. Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. J Histochem Cytochem. 1996;44(12):1353–1362.
  • Skaland I, Nordhus M, Gudlaugsson E, et al. Evaluation of 5 different labeled polymer immunohistochemical detection systems. Appl Immunohistochem Mol Morphol. 2010;18(1):90–96.
  • Warford A, Akbar H, Riberio D. Antigen retrieval, blocking, detection and visualisation systems in immunohistochemistry: a review and practical evaluation of tyramide and rolling circle amplification systems. Methods. 2014;70(1):28–33.
  • van der Loos CM. Chromogens in multiple immunohistochemical staining used for visual assessment and spectral imaging: the colorful future. J Histotechnol. 2010;33(1):31–40.
  • Day WA, Lefever MR, Ochs RL, et al. Covalently deposited dyes: a new chromogen paradigm that facilitates analysis of multiple biomarkers in situ. Lab Invest. 2017;97(1):104–113.
  • Billinton N, Knight AW. Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem. 2001;291(2):175–197.
  • Viegas MS, Martins TC, Seco F, et al. An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues. Eur J Histochem. 2007;51(1):59–66.
  • Olympus. Microscopy resource center. [cited 2022 Jun 19]; Available from: https://www.olympus-lifescience.com/en/microscope-resource
  • Zeiss. Education in microscopy and digital Imaging. 2022 [cited 2022 Jun 19]; Available from: https://zeiss-campus.magnet.fsu.edu
  • Cromey DW. Avoiding twisted pixels: ethical guidelines for the appropriate use and manipulation of scientific digital images. Science and Engineering Ethics. 2010;16(4):639–667.
  • Inoue T, Yagi Y. Color standardization and optimization in whole slide imaging. Clin Diagn Pathol. 2020;4(1). DOI:10.15761/CDP.1000139
  • Pritt BS, Gibson PC, Cooper K. Digital imaging guidelines for pathology: a proposal for general and academic use. Adv Anat Pathol. 2003;10(2):96–100.
  • Sasaki A. Recent advances in the standardization of fluorescence microscopy for quantitative image analysis. Biophys Rev. 2022;14(1):33–39.
  • Yagi Y, Gilbertson JR. Digital imaging in pathology: the case for standardization. J Telemed Telecare. 2005;11(3):109–116.
  • Bandrowski A. A decade of GigaScience: what can be learned from half a million RRIDs in the scientific literature? Gigascience. 2022;11. DOI:10.1093/gigascience/giac058.
  • Charalambakis NE, Ambulos NP, Hockberger P, et al. Establishing a national strategy for shared research resources in biomedical sciences. FASEB J. 2021;35(11):e21973.
  • Kos-Braun IC, Gerlach B, Pitzer C. A survey of research quality in core facilities. Elife. 2020;9. DOI:10.7554/eLife.62212.
  • Mische SM, Fisher NC, Meyn SM, et al. A review of the scientific rigor, reproducibility, and transparency studies conducted by the ABRF research groups. J Biomol Tech. 2020;31(1):11–26.
  • Restivo L, Gerlach B, Tsoory M, et al. Towards best practices in research: role of academic core facilities. EMBO Rep. 2021;22(12):e53824.
  • Decalf J, Albert ML, Ziai J. New tools for pathology: a user’s review of a highly multiplexed method for in situ analysis of protein and RNA expression in tissue. J Pathol. 2019;247(5):650–661.
  • McGinnis LM, Ibarra‐Lopez V, Rost S, et al. Clinical and research applications of multiplexed immunohistochemistry and in situ hybridization. J Pathol. 2021;254(4):405–417.
  • Eng J, Bucher E, Hu Z, et al. A framework for multiplex imaging optimization and reproducible analysis. Commun Biol. 2022;5(1):438.
  • Bergholtz H, Carter J, Cesano A, et al. Best practices for spatial profiling for breast cancer research with the GeoMx(®) Digital spatial profiler. Cancers (Basel). 2021;13(17):4456.
  • Kakade VR, Weiss M, Cantley LG. Using imaging mass cytometry to define cell identities and interactions in human tissues. Front Physiol. 2021;12:817181.
  • Porta Siegel T, Hamm G, Bunch J, et al. Mass spectrometry imaging and integration with other imaging modalities for greater molecular understanding of biological tissues. Mol Imaging Biol. 2018;20(6):888–901.
  • Berglund L, Björling E, Oksvold P, et al. A genecentric human protein Atlas for expression profiles based on antibodies. Mol Cell Proteomics. 2008;7(10):2019–2027.
  • Ponten F, Jirstrom K, Uhlen M. The human protein Atlas–a tool for pathology. J Pathol. 2008;216(4):387–393.
  • Baker M. When antibodies mislead: the quest for validation. Nature. 2020;585(7824):313–314.
  • Babic Z, Capes-Davis A, Martone ME, et al. Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines. Elife. 2019;8. DOI:10.7554/eLife.41676.