134
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

GW1929 (an agonist of PPARγ) inhibits excessive production of reactive oxygen species in cisplatin-stimulated renal tubular epithelial cells, hampers cell apoptosis, and ameliorates renal injury

, &
Pages 68-79 | Received 29 Jun 2023, Accepted 17 Nov 2023, Published online: 29 Nov 2023

References

  • Chen X, Wei W, Li Y, et al. Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis. Chem Biol Interact. 2019;308:269–278. doi: 10.1016/j.cbi.2019.05.040
  • Dupre TV, Doll MA, Shah PP, et al. Suramin protects from cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol. 2016;310(3):F248–58. doi: 10.1152/ajprenal.00433.2015
  • Holditch SJ, Brown CN, Lombardi AM, et al. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. IJMS. 2019;20(12):3011. doi: 10.3390/ijms20123011
  • Zhao M, Wang Y, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11(4):1845–1863. doi: 10.7150/thno.50905
  • Zhu L, Yuan Y, Yuan L, et al. Activation of TFEB-mediated autophagy by trehalose attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Theranostics. 2020;10(13):5829–5844. doi: 10.7150/thno.44051
  • Reuter S, Gupta SC, Chaturvedi MM, et al. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006
  • Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;13:1057–1073. doi: 10.2147/JIR.S275595
  • Sinha K, Das J, Pal PB, et al. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87(7):1157–1180. doi: 10.1007/s00204-013-1034-4
  • Nagothu KK, Bhatt R, Kaushal GP, et al. Fibrate prevents cisplatin-induced proximal tubule cell death. Kidney Int. 2005;68(6):2680–2693. doi: 10.1111/j.1523-1755.2005.00739.x
  • Xi Y, Zhang Y, Zhu S, et al. PPAR-mediated toxicology and applied pharmacology. Cells. 2020;9(2):352. doi: 10.3390/cells9020352
  • Gao J, Gu Z. The role of peroxisome proliferator-activated receptors in kidney diseases. Front Pharmacol. 2022;13:832732. doi: 10.3389/fphar.2022.832732
  • Tovar-Palacio C, Torres N, Diaz-Villaseñor A, et al. The role of nuclear receptors in the kidney in obesity and metabolic syndrome. Genes Nutr. 2012;7(4):483–498. doi: 10.1007/s12263-012-0295-5
  • Corrales P, Izquierdo-Lahuerta A, Medina-Gómez G. Maintenance of kidney metabolic homeostasis by PPAR gamma. Int J Mol Sci. 2018;19(7). doi: 10.3390/ijms19072063
  • Tyagi S, Sharma S, Gupta P, et al. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2(4):236–240. doi: 10.4103/2231-4040.90879
  • Chung BH, Lim SW, Ahn KO, et al. Protective effect of peroxisome proliferator activated receptor gamma agonists on diabetic and non-diabetic renal diseases. Nephrology (Carlton). 2005;10 Suppl(s2):S40–3. doi: 10.1111/j.1440-1797.2005.00456.x
  • Elshazly S, Soliman E. PPAR gamma agonist, pioglitazone, rescues liver damage induced by renal ischemia/reperfusion injury. Toxicol Appl Pharmacol. 2019;362:86–94. doi: 10.1016/j.taap.2018.10.022
  • Stavniichuk A, Hye Khan MA, Yeboah MM, et al. Dual soluble epoxide hydrolase inhibitor/PPAR-γ agonist attenuates renal fibrosis. Prosta Other Lipid Mediat. 2020;150:106472. doi: 10.1016/j.prostaglandins.2020.106472
  • Giampietro L, Gallorini M, De Filippis B, et al. PPAR-γ agonist GL516 reduces oxidative stress and apoptosis occurrence in a rat astrocyte cell line. Neurochem Int. 2019;126:239–245. doi: 10.1016/j.neuint.2019.03.021
  • Yousefipour Z, Oyekan A, Newaz M. Role of G protein-coupled receptor kinase-2 in peroxisome proliferator-activated receptor gamma-mediated modulation of blood pressure and renal vascular reactivity in SHR. Am J Nephrol. 2009;30(3):201–208. doi: 10.1159/000218061
  • Li S, Shi M, Wan Y, et al. Inflammasome/nf-κB translocation inhibition via PPARγ agonist mitigates inorganic mercury induced nephrotoxicity. Ecotoxicol Environ Saf. 2020;201:110801. doi: 10.1016/j.ecoenv.2020.110801
  • Wang X, Xu K, Xiong Y, et al. Effects of GW1929 on uterus, ovary and bone metabolism function in perimenopause rats. Am J Transl Res. 2020;12(5):1884–1893.
  • Mäkelä J, Tselykh TV, Kukkonen JP, et al. Peroxisome proliferator-activated receptor-γ (PPARγ) agonist is neuroprotective and stimulates PGC-1α expression and CREB phosphorylation in human dopaminergic neurons. Neuropharmacology. 2016;102:266–275. doi: 10.1016/j.neuropharm.2015.11.020
  • Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno J, et al. The role of PGC-1α and mitochondrial biogenesis in kidney diseases. Biomolecules. 2020;10(2):347. doi: 10.3390/biom10020347
  • Yuan L, Yuan Y, Liu F, et al. PGC-1α alleviates mitochondrial dysfunction via TFEB-mediated autophagy in cisplatin-induced acute kidney injury. Aging (Albany NY). 2021;13(6):8421–8439. doi: 10.18632/aging.202653
  • Moore-Carrasco R, Figueras M, Ametller E, et al. Effects of the PPARγ agonist GW1929 on muscle wasting in tumour-bearing mice. Oncol Rep. 2008;19(1):253–256. doi: 10.3892/or.19.1.253
  • Hu J, Gu W, Ma N, et al. Leonurine alleviates ferroptosis in cisplatin-induced acute kidney injury by activating the Nrf2 signalling pathway. Br J Pharmacol. 2022;179(15):3991–4009. doi: 10.1111/bph.15834
  • Qi M, Yu B, Yu H, et al. Integrated analysis of a ceRNA network reveals potential prognostic lncRnas in gastric cancer. Cancer Med. 2020;9(5):1798–1817. doi: 10.1002/cam4.2760
  • Li Z, Liu T, Feng Y, et al. PPARγ alleviates sepsis-induced liver injury by inhibiting hepatocyte pyroptosis via inhibition of the ROS/TXNIP/NLRP3 signaling pathway. Oxid Med Cell Longev. 2022;2022:1–15. doi: 10.1155/2022/1269747
  • Mapuskar KA, Wen H, Holanda DG, et al. Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease. Redox Biol. 2019;20:98–106. doi: 10.1016/j.redox.2018.09.020
  • El-Sayed RM, Abo El Gheit RE, Badawi GA. Vincamine protects against cisplatin induced nephrotoxicity via activation of Nrf2/HO-1 and hindering TLR4/IFN-γ/CD44 cells inflammatory cascade. Life Sci. 2021;272:119224. doi: 10.1016/j.lfs.2021.119224
  • Tickner J, Fan LM, Du J, et al. Nox2-derived ROS in PPARγ signaling and cell-cycle progression of lung alveolar epithelial cells. Free Radic Biol Med. 2011;51(3):763–772. doi: 10.1016/j.freeradbiomed.2011.05.027
  • Zhao Z, Wu J, Xu H, et al. XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia−reperfusion injury. Cell Death Dis. 2020;11(8):629. doi: 10.1038/s41419-020-02871-6
  • Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994–1007. doi: 10.1038/sj.ki.5002786
  • Xie X, Wu F, Tian J, et al. Pyrocatechol alleviates cisplatin-induced acute kidney injury by inhibiting ROS production. Oxid Med Cell Longev. 2022;2022:1–15. doi: 10.1155/2022/2158644
  • Kaundal RK, Sharma SS. Ameliorative effects of GW1929, a nonthiazolidinedione PPARγ agonist, on inflammation and apoptosis in focal cerebral ischemic-reperfusion injury. Curr Neurovasc Res. 2011;8(3):236–245. doi: 10.2174/156720211796558078
  • Ni S, Li D, Wei H, et al. PPARγ attenuates interleukin-1β-induced cell apoptosis by inhibiting NOX2/ROS/p38MAPK activation in osteoarthritis chondrocytes. Oxid Med Cell Longev. 2021;2021:1–15. doi: 10.1155/2021/5551338
  • Wang H, Xiong W, Hang S, et al. Depletion of SENP1-mediated PPARγ SUMOylation exaggerates intermittent hypoxia-induced cognitive decline by aggravating microglia-mediated neuroinflammation. Aging (Albany NY). 2021;13(11):15240–15254. doi: 10.18632/aging.203084
  • Jamshidzadeh A, Heidari R, Golzar T, et al. Effect of eisenia foetida extract against cisplatin-induced kidney injury in rats. J Diet Suppl. 2016;13(5):551–559. doi: 10.3109/19390211.2015.1124163

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.