137
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Antioxidant properties of the Lebanese plant Iris x germanica L. crude extracts and antagonism of chlorpromazine toxicity on Saccharomyces cerevisiae

ORCID Icon, , , ORCID Icon &
Pages 1168-1179 | Received 18 Mar 2020, Accepted 08 Aug 2020, Published online: 26 Aug 2020

References

  • Abernathy, C.O., Lukacs, L., and Zimmerman, H.J., 1977. Adverse effects of chlorpromazine metabolites on isolated hepatocytes. Proceedings of the Society for. Experimental Biology and Medicine, 155 (4), 474–478.
  • Abu-Dahab, R., and Afifi, F., 2007. Antiproliferative activity of selected medicinal plants of Jordan against a breast adenocarcinoma cell line (MCF7). Scientia Pharmaceutica, 75 (3), 121–146.
  • Adamczyk, J., et al., 2016. Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts. Oncotarget, 7 (21), 29958–29976.
  • Al-Attrache, H., et al., 2018. N-acetylcysteine potentiates diclofenac toxicity in Saccharomyces cerevisiae: stronger potentiation in ABC transporter mutant strains. Drug and Chemical Toxicology, 41 (1), 89–94.
  • Al-Jassaci, M., Mohammed, G., and Hameed, I.H., 2016. Secondary metabolites analysis of Saccharomyces cerievisiae and evaluation of antibacterial activity. International Journal of Pharmaceutical and Clinical Research, 8, 304–315.
  • Amri, B., et al., 2017. Marrubium vulgare L. Leave extract: phytochemical composition, antioxidant and wound healing properties. Molecules, 22 (11), 1851.
  • Anthérieu, S., et al., 2013. Oxidative stress plays a major role in chlorpromazine‐induced cholestasis in human HepaRG cells. Hepatology, 57 (4), 1518–1529.
  • Anwar, F., et al., 2006. Antioxidant activity of various plant extracts under ambient and accelerated storage of sunflower oil. Grasas y Aceites, 57 (2), 189–197.
  • Asghar, S.F., and Choudahry, M., 2011. Gas chromatography-mass spectrometry (GC-MS) analysis of petroleum ether extract (oil) and bio-assays of crude extract of Iris germanica. International Journal of Genetics and Molecular Biology, 3, 95–100.
  • Asghar, S. F., et al., 2009. Secondary metabolites isolated from Iris germanica. Records of Natural Products, 3, 139–152.
  • Barr, M.M., 2003. Super models. Physiological Genomics, 13 (1), 15–24.
  • Basgedik, B., Ugur, A., and Sarac, N., 2014. Antimicrobial, antioxidant, antimutagenic activities, and phenolic compounds of Iris germanica. Industrial Crops and Products, 61, 526–530.
  • Benoit-Vical, F., et al., 2003. Antiplasmodial and antifungal activities of iridal, a plant triterpenoid. Phytochemistry, 62 (5), 747–751.
  • Bisquert, R., Muñiz-Calvo, S., and Guillamón, J.M., 2018. Protective role of intracellular melatonin against oxidative stress and UV radiation in Saccharomyces cerevisiae. Frontiers in Microbiology, 9, 318.
  • Botstein, D., and Fink, G.R., 2011. Yeast: an experimental organism for 21st Century biology. Genetics, 189 (3), 695–704.
  • Bracesco, N., et al., 2003. Antioxidant activity of a botanical extract preparation of Ilex paraguariensis: prevention of DNA double-strand breaks in Saccharomyces cerevisiae and human low-density lipoprotein oxidation. The Journal of Alternative and Complementary Medicine, 9 (3), 379–387.
  • Bratislav, D., et al., 2017. Effects of agmatine on chlorpromazine toxicity in the liver of Wistar rats: the possible role of oxidant/antioxidant imbalance. Experimental Animals, 66 (1), 17–27.
  • Breitenbach, M., et al., 2013. Oxidative stress and neurodegeneration: the yeast model system. Frontiers in Bioscience, 18, 1174–1193.
  • Buchweitz, J.P., et al., 2002. Underlying endotoxemia augments toxic responses to chlorpromazine: is there a relationship to drug idiosyncrasy? Journal of Pharmacology and Experimental Therapeutics, 300 (2), 460–467.
  • Caldara, M., et al., 2017. Editor’s highlight: off-target effects of neuroleptics and antidepressants on Saccharomyces cerevisiae. Toxicological Sciences, 156, 538–548.
  • Choen, G., Rapatz, W., and Ruis, H., 1988. Sequence of the Saccharomyces cerevisiae CATI gene and amino acid sequence of catalase A derived from it. European Journal of Biochemistry, 176 (1), 159–163.
  • Choudhary, D., and Afroze, A., 2017. Pharmacology and phytochemistry of isoflavonoids from Iris Species. Journal of Pharmacology & Clinical Research, 3, 555–609.
  • Choudhary, M.I., et al., 2005. Effects of ethanolic extract of Iris germanica on lipid profile of rats fed on a high-fat diet. Journal of Ethnopharmacology, 98, 217–220.
  • Claus, S., Jezierska, S., and Van Bogaert, I.N., 2019. Protein‐facilitated transport of hydrophobic molecules across the yeast plasma membrane. FEBS Letters, 593 (13), 1508–1527.
  • Crisan, I., and Cantor, M., 2016. New perspectives on medicinal properties and uses of Iris sp. Hop and Medicinal Plants, 24, 24–36.
  • Dejanovic, B., et al., 2016. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats. Journal of Veterinary Science, 17 (1), 53–61.
  • Dejanović, B., et al., 2016. Oxidative stress induced by chlorpromazine in patients treated and acutely poisoned with the drug. Vojnosanitetski Pregled, 73 (4), 312–317.
  • dos Santos, S.C., et al., 2012. Yeast toxicogenomics: genome-wide responses to chemical stresses with impact in environmental health, pharmacology, and biotechnology. Frontiers in Genetics, 3, 63
  • Dudley, K., Liu, X., and De Haan, S., 2017. Chlorpromazine dose for people with schizophrenia. Cochrane Database of Systematic Reviews, 4 (4), CD007778.
  • El Khoury, M., et al., 2020. Malva pseudolavatera Leaf Extract Promotes ROS induction leading to apoptosis in acute myeloid Leukemia cells in vitro. Cancers, 12 (2), 435.
  • Elmorsy, E., et al., 2017. The role of oxidative stress in antipsychotics induced ovarian toxicity. Toxicology In Vitro, 44, 190–195.
  • Farrugia, G., and Balzan, R., 2012. Oxidative stress and programmed cell death in yeast. Frontiers in Oncology, 2, 64.
  • Gasch, A. P., 2003. The environmental stress response: a common yeast response to diverse environmental stresses. In: Hohmann S., Mager W.H., eds. Yeast stress responses. Topics in Current Genetics, vol 1. Berlin, Heidelberg: Springer, 11–77. Springer, Berlin, Heidelberg. https://doi.org/https://doi.org/10.1007/3-540-45611-2_2
  • Ibrahim, S.R., Mohamed, G.A., and Al-Musayeib, N.M., 2012. New constituents from the rhizomes of Egyptian Iris germanica L. Molecules, 17 (3), 2587–2598.
  • Ibrahim, S.R., et al., 2017. 8-Hydroxyirilone 5-methyl ether and 8-hydroxyirilone, new antioxidant and α-amylase inhibitors isoflavonoids from Iris germanica rhizomes. Bioorganic Chemistry, 70, 192–198.
  • Ikner, A., and Shiozaki, K., 2005. Yeast signaling pathways in the oxidative stress response. Mutation Research, 569 (1–2), 13–27.
  • Izawa, S., Inoue, Y., and Kimura, A., 1996. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochemical Journal, 320 (1), 61–67.
  • Janssen, A., Scheffer, J., and Svendsen, A.B., 1987. Antimicrobial activity of essential oils: a 1976-1986 literature review. Aspects of the test methods. Planta Medica, 53 (5), 395–398.
  • Jayaraman, J., and Namasivayam, N., 2011. Naringenin modulates circulatory lipid peroxidation, anti‐oxidant status and hepatic alcohol metabolizing enzymes in rats with ethanol induced liver injury. Fundamental & Clinical Pharmacology, 25 (6), 682–689.
  • Jayaraman, J., Veerappan, M., and Namasivayam, N., 2009. Potential beneficial effect of naringenin on lipid peroxidation and antioxidant status in rats with ethanol‐induced hepatotoxicity. The Journal of Pharmacy and Pharmacology, 61 (10), 1383–1390.
  • Kolaczkowski, M., Michalak, K., and Motohashi, N., 2003. Phenothiazines as potent modulators of yeast multidrug resistance. International Journal of Antimicrobial Agents, 22 (3), 279–283.
  • Lim, T., 2016. Iris x germanica. Edible medicinal and non-medicinal plants, Switzerland: Springer, 27–40.
  • Liu, J., and Barrientos, A., 2013. Transcriptional regulation of yeast oxidative phosphorylation hypoxic genes by oxidative stress. Antioxidants & Redox Signaling, 19 (16), 1916–1927.
  • Lucau-Danila, A., et al., 2005. Early expression of yeast genes affected by chemical stress. Molecular and Cellular Biology, 25 (5), 1860–1868.
  • Lushchak, V.I., and Gospodaryov, D.V., 2005. Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell Biology International, 29 (3), 187–192.
  • Madrigal-Santillán, E., et al., 2014. Review of natural products with hepatoprotective effects. World Journal of Gastroenterology, 20 (40), 14787–14804.
  • Madrigal-Santillán, E., et al., 2013. The chemoprevention of chronic degenerative disease through dietary antioxidants: progress, promise and evidences. Oxidative stress and chronic degenerative diseases-a role for antioxidants. Rijeka: Croatia InTech, 155–185.
  • Marques, F., et al., 2011. Stimulation of DNA repair in Saccharomyces cerevisiae by Ginkgo biloba leaf extract. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 49 (6), 1361–1366.
  • Mohamed, G.A., Ibrahim, S.R., and Ross, S.A., 2013. New ceramides and isoflavone from the Egyptian Iris germanica L. rhizomes. Phytochemistry Letters, 6 (3), 340–344.
  • Mokhtari, V., et al., 2017. A review on various uses of N-acetyl cysteine. Cell Journal, 19, 11.
  • Nadaroğlu, H., Demir, Y., and Demir, N., 2007. Antioxidant and radical scavenging properties of Iris germanica. Pharmaceutical Chemistry Journal, 41 (8), 409–415.
  • Nagarajan, J., et al., 2017. Chapter 8-carotenoids. Nutraceutical and functional food components, Galanakis, CM, ed. Cambridge, MA: Academic Press, 259–296.
  • Nasim, S., et al., 2003. Anti-inflammatory isoflavonoids from the rhizomes of Iris germanica. Journal of Ethnopharmacology, 86 (2–3), 177–180.
  • Nazir, N., et al., 2009. Immunomodulatory activity of isoflavones isolated from Iris germanica (Iridaceae) on T‐lymphocytes and cytokines. Phytotherapy Research: PTR, 23 (3), 428–433.
  • Nedamani, E.R., et al., 2014. Antioxidant properties of individual vs. combined extracts of rosemary leaves and oak fruit. Journal of Agricultural Science and Technology, 16, 1575–1586.
  • Odat, O., et al., 2007. Old yellow enzymes, highly homologous FMN oxidoreductases with modulating roles in oxidative stress and programmed cell death in yeast. The Journal of Biological Chemistry, 282 (49), 36010–36023.
  • Orhan, I., et al., 2003. Two isoflavones and bioactivity spectrum of the crude extracts of Iris germanica rhizomes. Phytotherapy Research, 17, 575–577.
  • Parmentier, C., et al., 2013. Transcriptomic hepatotoxicity signature of chlorpromazine after short and long-term exposure in primary human sandwich cultures. Drug Metabolism and Disposition, 41 (10), 1835–1842.
  • Pillai, A., et al., 2007. Long-term antipsychotic treatments and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. Journal of Psychiatric Research, 41 (5), 372–386.
  • Pina, B., et al., 2003. The different (sur) faces of Rap1p. Molecular Genetics and Genomics, 268 (6), 791–798.
  • Piscopo, M., et al., 2019. Antimicrobial and antioxidant activity of proteins from Feijoa sellowiana Berg. fruit before and after in vitro gastrointestinal digestion. Natural Product Research, 2, 1–5. doi: https://doi.org/10.1080/14786419.2018.1543686.
  • Raitt, D.C., et al., 2000. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Molecular Biology of the Cell, 11 (7), 2335–2347.
  • Rios, J., and Recio, M., 2005. Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100 (1–2), 80–84.
  • Rosa, R.M., et al., 2006. Antioxidant and antimutagenic properties of Hibiscus tiliaceus L. methanolic extract. Journal of Agricultural and Food Chemistry, 54 (19), 7324–7330.
  • Ross, Z., et al., 2001. Antimicrobial properties of garlic oil against human enteric bacteria: evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Applied and Environmental Microbiology, 67 (1), 475–480.
  • Saffi, J., et al., 2006. Antioxidant activity of L-ascorbic acid in wild-type and superoxide dismutase deficient strains of Saccharomyces cerevisiae. Redox Report: Communications in Free Radical Research, 11 (4), 179–184.
  • Samad, N.A., et al., 2016. Unlocking the karyological and cytogenetic diversity of iris from Lebanon: oncocyclus section shows a distinctive profile and relative stasis during its continental radiation. PLoS One, 11 (8), e0160816.
  • Sayyed, K., et al., 2019. Interaction of cigarette smoke condensate and some of its components with chlorpromazine toxicity on Saccharomyces cerevisiae. Drug and Chemical Toxicology, 1–11.
  • Shaker, E., Mahmoud, H., and Mnaa, S., 2010. Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 48 (3), 803–806.
  • Sharafi, S.M., et al., 2010. Protective effects of bioactive phytochemicals from Mentha piperita with multiple health potentials. Pharmacognosy Magazine, 6 (23), 147–153.
  • Singleton, V. L., Orthofer, R., and Lamuela-Raventós, R. M., 1999. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology, 299, 152–178.
  • Sonam, K., and Guleria, S., 2017. Synergistic antioxidant activity of natural products. Annals of Pharmacotherapy, 2017. 2, 1–6.
  • Tenreiro, S., et al., 2013. Harnessing the power of yeast to unravel the molecular basis of neurodegeneration. Journal of Neurochemistry, 127 (4), 438–452.
  • Tohme, G., and Tohme, H., 2011. Nouvelles recherches sur la flore endémique et naturalisée du Liban. Lebanese Science Journal, 12, 133–141.
  • Tortora, F., et al., 2019. Phenol-rich Feijoa sellowiana (Pineapple guava) extracts protect human red blood cells from mercury-induced cellular toxicity. Antioxidants, 8 (7), 220.
  • Tsang, C.K., et al., 2014. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nature Communications, 5, 3446.
  • van Leeuwen, J.S., Vermeulen, N.P., and Vos, J.C., 2011. Involvement of the pleiotropic drug resistance response, protein kinase c signaling, and altered zinc homeostasis in resistance of saccharomyces cerevisiae to diclofenac. Applied and Environmental Microbiology, 77 (17), 5973–5980.
  • Veeresham, C., Natural products derived from plants as a source of drugs. Journal of Advanced Pharmaceutical Technology & Research, 2012, 3, (4), 200–201.
  • Wang, S., et al., 2012. In vitro antioxidant synergism and antagonism between food extracts can lead to similar activities in H2O2‐induced cell death, caspase‐3 and MMP‐2 activities in H9c2 cells. Journal of the Science of Food and Agriculture, 92 (15), 2983–2993.
  • Wolfe, K.L., and Liu, R.H., 2007. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Journal of Agricultural and Food Chemistry, 55 (22), 8896–8907.
  • Wollenweber, E., et al., 2003. Cancer chemopreventive in vitro activities of isoflavones isolated from Iris germanica. Planta Medica, 69 (1), 15–20.
  • Xiao, H., et al., 2016. N-acetyl-L-cysteine protects the enterocyte against oxidative damage by modulation of mitochondrial function. Mediators of Inflammation, 2016, 1–9.
  • Xie, G.-Y., et al., 2013. New isoflavones with cytotoxic activity from the rhizomes of Iris germanica L. Natural Product Research, 27 (23), 2173–2177.
  • Xu, D.-P., et al., 2017. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. International Journal of Molecular Sciences, 18 (1), 96.
  • Yen, G.-C., and Chen, H.-Y., 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43 (1), 27–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.